TY - JOUR
T1 - Prolactin cycles in sheep under constant photoperiod: Evidence that photorefractoriness develops within the pituitary gland independently of the prolactin output signal
AU - Lincoln, G A
AU - Andersson, H
AU - Clarke, Iain James
PY - 2003
Y1 - 2003
N2 - The present study investigated photorefractoriness in the prolactin (PRL) axis in hypothalamopituitary-disconnected (HPD) sheep exposed to prolonged long days. In experiment 1, HPD Soay rams transferred from short (8L:16D) to long (16L:8D) days for 48 wk to induce a cycle of activation, decline (photorefractoriness), and reactivation in PRL secretion were treated chronically with bromocriptine (dopamine-receptor agonist) or vehicle from the onset of photorefractoriness. Bromocriptine (0.01-0.04 mg kg-1 day-1; 12-24 wk of long days) blocked PRL release and caused a rebound response after the treatment, but it had no effect on the long-term PRL cycle (posttreatment PRL minimum, mean +/- SEM, 35.3 +/- 0.6 and 37.0 +/- 0.4 wk for bromocriptine and control groups, respectively; not significant). In experiment 2, HPD rams were treated with sulpiride (dopamine-receptor antagonist) during photorefractoriness. Sulpiride (0.6 mg/kg twice daily; 22-30 wk of long days) induced a marginal increase in blood PRL concentrations, but again, it had no effect on the long-term PRL cycle (PRL minimum, 37.9 +/- 0.4 and 37.6 +/- 0.9 wk for sulpiride and control groups, respectively; not significant). The 24-h blood melatonin profile consistently reflected the long-day photoperiod throughout, and blood FSH concentrations were minimal, confirming the effectiveness of the HPD surgery. The results support the conclusion that photorefractoriness is regulated at the level of the pituitary gland independently of the PRL output signal.
AB - The present study investigated photorefractoriness in the prolactin (PRL) axis in hypothalamopituitary-disconnected (HPD) sheep exposed to prolonged long days. In experiment 1, HPD Soay rams transferred from short (8L:16D) to long (16L:8D) days for 48 wk to induce a cycle of activation, decline (photorefractoriness), and reactivation in PRL secretion were treated chronically with bromocriptine (dopamine-receptor agonist) or vehicle from the onset of photorefractoriness. Bromocriptine (0.01-0.04 mg kg-1 day-1; 12-24 wk of long days) blocked PRL release and caused a rebound response after the treatment, but it had no effect on the long-term PRL cycle (posttreatment PRL minimum, mean +/- SEM, 35.3 +/- 0.6 and 37.0 +/- 0.4 wk for bromocriptine and control groups, respectively; not significant). In experiment 2, HPD rams were treated with sulpiride (dopamine-receptor antagonist) during photorefractoriness. Sulpiride (0.6 mg/kg twice daily; 22-30 wk of long days) induced a marginal increase in blood PRL concentrations, but again, it had no effect on the long-term PRL cycle (PRL minimum, 37.9 +/- 0.4 and 37.6 +/- 0.9 wk for sulpiride and control groups, respectively; not significant). The 24-h blood melatonin profile consistently reflected the long-day photoperiod throughout, and blood FSH concentrations were minimal, confirming the effectiveness of the HPD surgery. The results support the conclusion that photorefractoriness is regulated at the level of the pituitary gland independently of the PRL output signal.
U2 - 10.1095/biolreprod.103.017673
DO - 10.1095/biolreprod.103.017673
M3 - Article
SN - 0006-3363
VL - 69
SP - 1416
EP - 1423
JO - Biology of Reproduction
JF - Biology of Reproduction
IS - 4
ER -