Projects per year
Abstract
The El Nino–Southern Oscillation (ENSO) has far reaching impacts through atmospheric teleconnections, which make it a prominent driver of global interannual climate variability. As such, whether and how these teleconnections may change due to projected future climate change remains is a topic of high societal relevance. Here, ENSO Surface Temperature (TAS) and Precipitation (PR) teleconnections between the historical and high-emission future simulations are compared in more than 31 models from Phase 6 of the Coupled Model Intercomparison Project. We find significant future (2081–2100) TAS and PR teleconnection changes over approximately 50% of teleconnected regions in December-February relative to 1950–2014. The large majority of these significant teleconnection changes suggest that an amplification of the historical teleconnections will occur, however, some regions also display a significant teleconnection dampening. Further to this, in many regions these ENSO teleconnection changes scale with the projected warming level, with higher warming leading to larger teleconnection changes.
Original language | English |
---|---|
Article number | e2021GL097511 |
Number of pages | 10 |
Journal | Geophysical Research Letters |
Volume | 49 |
Issue number | 11 |
DOIs | |
Publication status | Published - 16 Jun 2022 |
Keywords
- climate change
- ENSO
- projected change
- teleconnection
Projects
- 1 Finished
-
ARC Centre of Excellence for Climate Extremes
Pitman, A. J., Jakob, C., Alexander, L., Reeder, M., Roderick, M., England, M. H., Abramowitz, G., Abram, N., Arblaster, J., Bindoff, N. L., Dommenget, D., Evans, J. P., Hogg, A. M., Holbrook, N. J., Karoly, D. J., Lane, T. P., Sherwood, S. C., Strutton, P., Ebert, E., Hendon, H., Hirst, A. C., Marsland, S., Matear, R., Protat, A., Wang, Y., Wheeler, M. C., Best, M. J., Brody, S., Grabowski, W., Griffies, S., Gruber, N., Gupta, H., Hallberg, R., Hohenegger, C., Knutti, R., Meehl, G. A., Milton, S., de Noblet-Ducoudre, N., Or, D., Petch, J., Peters-Lidard, C., Overpeck, J., Russell, J., Santanello, J., Seneviratne, S. I., Stephens, G., Stevens, B., Stott, P. A. & Saunders, K.
Monash University – Internal University Contribution, Monash University – Internal School Contribution, Monash University – Internal Faculty Contribution, University of New South Wales (UNSW), Australian National University (ANU), University of Melbourne, University of Tasmania, Bureau of Meteorology (BOM) (Australia), Department of Climate change, Energy, the Environment and Water (DCCEEW) (New South Wales)
1/01/17 → 31/12/24
Project: Research