Progressive Spinal Cord Degeneration in Friedreich's Ataxia: Results from ENIGMA-Ataxia

Thiago J.R. Rezende, Isaac M. Adanyeguh, Filippo Arrigoni, Benjamin Bender, Fernando Cendes, Louise A. Corben, Andreas Deistung, Martin Delatycki, Imis Dogan, Gary F. Egan, Sophia L. Göricke, Nellie Georgiou-Karistianis, Pierre-Gilles Henry, Diane Hutter, Neda Jahanshad, James M. Joers, Christophe Lenglet, Tobias Lindig, Alberto R.M. Martinez, Andrea MartinuzziGabriella Paparella, Denis Peruzzo, Kathrin Reetz, Sandro Romanzetti, Ludger Schöls, Jörg B. Schulz, Matthis Synofzik, Sophia I. Thomopoulos, Paul M. Thompson, Dagmar Timmann, Ian H. Harding, Marcondes C. França

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Background: Spinal cord damage is a hallmark of Friedreich's ataxia (FRDA), but its progression and clinical correlates remain unclear. Objective: The objective of this study was to perform a characterization of cervical spinal cord structural damage in a large multisite FRDA cohort. Methods: We performed a cross-sectional analysis of cervical spinal cord (C1–C4) cross-sectional area (CSA) and eccentricity using magnetic resonance imaging data from eight sites within the ENIGMA-Ataxia initiative, including 256 individuals with FRDA and 223 age- and sex-matched control subjects. Correlations and subgroup analyses within the FRDA cohort were undertaken based on disease duration, ataxia severity, and onset age. Results: Individuals with FRDA, relative to control subjects, had significantly reduced CSA at all examined levels, with large effect sizes (d > 2.1) and significant correlations with disease severity (r < −0.4). Similarly, we found significantly increased eccentricity (d > 1.2), but without significant clinical correlations. Subgroup analyses showed that CSA and eccentricity are abnormal at all disease stages. However, although CSA appears to decrease progressively, eccentricity remains stable over time. Conclusions: Previous research has shown that increased eccentricity reflects dorsal column (DC) damage, while decreased CSA reflects either DC or corticospinal tract (CST) damage, or both. Hence our data support the hypothesis that damage to the DC and damage to CST follow distinct courses in FRDA: developmental abnormalities likely define the DC, while CST alterations may be both developmental and degenerative. These results provide new insights about FRDA pathogenesis and indicate that CSA of the cervical spinal cord should be investigated further as a potential biomarker of disease progression.

Original languageEnglish
Pages (from-to)45-56
Number of pages12
JournalMovement Disorders
Volume45
Issue number56
DOIs
Publication statusPublished - Jan 2023

Keywords

  • ENIGMA-ataxia
  • Friedreich's ataxia
  • MRI
  • SCT
  • spinal cord

Cite this