Prior normalization for certified likelihood-informed subspace detection of Bayesian inverse problems

Tiangang Cui, Xin T. Tong, Olivier Zahm

Research output: Contribution to journalArticleResearchpeer-review

4 Citations (Scopus)

Abstract

Markov chain Monte Carlo (MCMC) methods form one of the algorithmic foundations of Bayesian inverse problems. The recent development of likelihood-informed subspace (LIS) methods offers a viable route to designing efficient MCMC methods for exploring high-dimensional posterior distributions via exploiting the intrinsic low-dimensional structure of the underlying inverse problem. However, existing LIS methods and the associated performance analysis often assume that the prior distribution is Gaussian. This assumption is limited for inverse problems aiming to promote sparsity in the parameter estimation, as heavy-tailed priors, e.g., Laplace distribution or the elastic net commonly used in Bayesian LASSO, are often needed in this case. To overcome this limitation, we consider a prior normalization technique that transforms any non-Gaussian (e.g. heavy-tailed) priors into standard Gaussian distributions, which makes it possible to implement LIS methods to accelerate MCMC sampling via such transformations. We also rigorously investigate the integration of such transformations with several MCMC methods for high-dimensional problems. Finally, we demonstrate various aspects of our theoretical claims on two nonlinear inverse problems.

Original languageEnglish
Article number124002
Number of pages37
JournalInverse Problems
Volume38
Issue number12
DOIs
Publication statusPublished - Dec 2022

Keywords

  • Bayesian inverse problem
  • dimension reduction
  • heavy-tailed distribution
  • likelihood informed subspace
  • Markov chain Monte Carlo

Cite this