TY - JOUR
T1 - Prevalence of bacterial resistance within an eco-agricultural system in Hangzhou, China
AU - Xu, Like
AU - Qian, Yanyun
AU - Su, Chao
AU - Cheng, Weixiao
AU - Li, Jianan
AU - Wahlqvist, Mark L.
AU - Chen, Hong
PY - 2016/11/1
Y1 - 2016/11/1
N2 - The wide use of antibiotics in the animal husbandry and the relevant sustainable industries may promote the emergence of antibiotic-resistant bacteria (ARB), which constitutes a growing threat to human health. The objective of this study was to determine the abundance and diversity of sulfonamide- and tetracycline-resistant bacteria within an eco-agricultural system (EAS) in Hangzhou, China. We investigated samples at every link in the EAS, from livestock manure, to biogas residues and biogas slurry, to vegetable and ryegrass fields, to a fish pond. A combination of culture-based and 16S rRNA gene-based sequencing method was used in this study. Within the studied system, the average rate of bacterial resistance to sulfonamide (46.19 %) was much higher than that of tetracycline (8.51 %) (p < 0.01). There were 224 isolates that were enumerated and sequenced, 108 of which were identified to species level. The genera comprising the sulfamethoxazole-resistant (SMXr) bacteria were generally different from those of tetracycline-resistant (TCr) bacteria. Staphylococcus and Acinetobacter were the most dominant genera of SMXr bacteria (19.30 % of the total resistant bacteria) and TCr bacteria (14.04 % of the total resistant bacteria), respectively. Several strains of resistant opportunistic pathogens (e.g., Pantoea agglomerans) were detected in edible vegetable samples, which may exert a potential threat to both pig production and human health. In general, this study indicates that the EAS is an important reservoir of antibiotic-resistant bacteria, some of which may be pathogenic.
AB - The wide use of antibiotics in the animal husbandry and the relevant sustainable industries may promote the emergence of antibiotic-resistant bacteria (ARB), which constitutes a growing threat to human health. The objective of this study was to determine the abundance and diversity of sulfonamide- and tetracycline-resistant bacteria within an eco-agricultural system (EAS) in Hangzhou, China. We investigated samples at every link in the EAS, from livestock manure, to biogas residues and biogas slurry, to vegetable and ryegrass fields, to a fish pond. A combination of culture-based and 16S rRNA gene-based sequencing method was used in this study. Within the studied system, the average rate of bacterial resistance to sulfonamide (46.19 %) was much higher than that of tetracycline (8.51 %) (p < 0.01). There were 224 isolates that were enumerated and sequenced, 108 of which were identified to species level. The genera comprising the sulfamethoxazole-resistant (SMXr) bacteria were generally different from those of tetracycline-resistant (TCr) bacteria. Staphylococcus and Acinetobacter were the most dominant genera of SMXr bacteria (19.30 % of the total resistant bacteria) and TCr bacteria (14.04 % of the total resistant bacteria), respectively. Several strains of resistant opportunistic pathogens (e.g., Pantoea agglomerans) were detected in edible vegetable samples, which may exert a potential threat to both pig production and human health. In general, this study indicates that the EAS is an important reservoir of antibiotic-resistant bacteria, some of which may be pathogenic.
KW - Antibiotic-resistant bacteria
KW - Eco-agricultural system
KW - Sulfonamide
KW - Tetracycline
UR - http://www.scopus.com/inward/record.url?scp=84981244099&partnerID=8YFLogxK
U2 - 10.1007/s11356-016-7345-2
DO - 10.1007/s11356-016-7345-2
M3 - Article
C2 - 27502562
AN - SCOPUS:84981244099
SN - 0944-1344
VL - 23
SP - 21369
EP - 21376
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 21
ER -