TY - JOUR
T1 - Preterm human amnion epithelial cells have limited reparative potential
AU - Lim, Rebecca Seok Wai
AU - Chan, Siow Teng
AU - Tan, Jean
AU - Mockler, Joanne C
AU - Murphy, Sean
AU - Wallace, Euan Morrison
PY - 2013
Y1 - 2013
N2 - The collection and use of stem cells from the fetal membranes as cell therapy for a variety of lung diseases, including preterm lung disease, have been previously proposed. To date, only cells from term amnion have been assessed. In the setting of a future therapy for the preterm neonate, it would be ideal if autologous cells could be given. However, the reparative and anti-inflammatory actions of stem cells isolated from preterm amnions have not been evaluated. In this study, with a view to developing an autologous cell therapy for preterm lung injury, we compared the differentiation potential and efficacy of term versus preterm human amnion epithelial cells (hAECs) to protect against inflammation and fibrosis in a bleomycin mouse model of lung injury. We found that, unlike term hAECs, preterm hAECs did not differentiate into a lung lineage following culture in small airway growth media. Preterm hAECs also exerted significantly less protective effects than term hAEC following acute lung injury. Specifically, preterm hAEC did not improve Ashcroft scoring or collagen deposition in the lung despite a reduction in activated myofibroblasts. Term hAECs expressed double the levels of HLA-G compared to preterm hAECs. These findings indicate that while hAECs can be isolated from term and preterm amnions in similar numbers, they bear distinctive characteristics, which may impact upon their clinical use.
AB - The collection and use of stem cells from the fetal membranes as cell therapy for a variety of lung diseases, including preterm lung disease, have been previously proposed. To date, only cells from term amnion have been assessed. In the setting of a future therapy for the preterm neonate, it would be ideal if autologous cells could be given. However, the reparative and anti-inflammatory actions of stem cells isolated from preterm amnions have not been evaluated. In this study, with a view to developing an autologous cell therapy for preterm lung injury, we compared the differentiation potential and efficacy of term versus preterm human amnion epithelial cells (hAECs) to protect against inflammation and fibrosis in a bleomycin mouse model of lung injury. We found that, unlike term hAECs, preterm hAECs did not differentiate into a lung lineage following culture in small airway growth media. Preterm hAECs also exerted significantly less protective effects than term hAEC following acute lung injury. Specifically, preterm hAEC did not improve Ashcroft scoring or collagen deposition in the lung despite a reduction in activated myofibroblasts. Term hAECs expressed double the levels of HLA-G compared to preterm hAECs. These findings indicate that while hAECs can be isolated from term and preterm amnions in similar numbers, they bear distinctive characteristics, which may impact upon their clinical use.
UR - http://www.ncbi.nlm.nih.gov/pubmed/23597502
U2 - 10.1016/j.placenta.2013.03.010
DO - 10.1016/j.placenta.2013.03.010
M3 - Article
SN - 0143-4004
VL - 34
SP - 488
EP - 492
JO - Placenta
JF - Placenta
IS - 6
ER -