Projects per year
Abstract
High-density Bi2O3 ceramics were prepared via a three-step cold sintering process (TS-CSP) at an ultra-low temperature. In the first step, the relative density of the Bi2O3 ceramic, subjected to 155 °C and 300 MPa for 25 min, is 96.23%, with the majority of the crystals inside the ceramic. The Bi2O3 ceramic was further densified with a corresponding increase in the relative density to 98.52%, after processing at 210 °C and 300 MPa for 25 min, in the second step. Finally, in the third stage of the processing, the temperature was raised from 210 °C to 270 °C and isothermally held for 25 min, which enabled the Bi2O3 ceramic grains to fully grow to yield a grain size of 4.02 μm, having a relative density of 99.13%. The densification mechanism of the TS-CSP Bi2O3 ceramics is via a dissolution-recrystallization-growth process. The relative permittivity, quality factor and grain size of the Bi2O3 ceramics are 33.44, 16,218 GHz and 4.02 μm, respectively. The materials and their preparation described herein provide a novel approach for the preparation of ultra-low temperature ceramics.
Original language | English |
---|---|
Pages (from-to) | 13848-13853 |
Number of pages | 6 |
Journal | Ceramics International |
Volume | 46 |
Issue number | 9 |
DOIs | |
Publication status | Published - 15 Jun 2020 |
Keywords
- BiO ceramics
- Cold sintering
- Dielectric properties
- High-density ceramics
Projects
- 1 Finished
-
ARC Research Hub for Computational Particle Technology
Yu, A., Zhao, D., Rudman, M., Jiang, X., Selomulya, C., Zou, R., Yan, W., Zhou, Z., Guo, B., Shen, Y., Kuang, S., Chu, K., Yang, R., Zhu, H., Zeng, Q., Dong, K., Strezov, V., Wang, G., Zhao, B., Song, S., Evans, T. J., Mao, X., Zhu, J., Hu, D., Pan, R., Li, J., Williams, S. R. O., Luding, S., Liu, Q., Zhang, J., Huang, H., Jiang, Y., Qiu, T., Hapgood, K. & Chen, W.
Australian Research Council (ARC), Jiangxi University of Science and Technology, Jiangsu Industrial Technology Research Institute, Fujian Longking Co Ltd, Baosteel Group Corporation, Hamersley Iron Pty Limited, Monash University, University of New South Wales (UNSW), University of Queensland , Western Sydney University (WSU), Macquarie University
31/12/16 → 30/12/21
Project: Research