Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep

Deborah M Sloboda, Timothy Moss, Shaofu Li, Dorota Doherty, Ilias Nitsos, John Challis, John Newnham

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Fetal exposure to synthetic glucocorticoids in sheep results in increased fetal hypothalamic-pituitary-adrenal (HPA) activity persisting to one year of age. We aimed to determine the effects of single or repeated maternal or fetal betamethasone injections on offspring HPA activity at 2 and 3 yr of age and whether changes in adrenal mediators of steroidogenesis contribute to changes in pituitary-adrenal function. Pregnant ewes or their fetuses received either repeated intramuscular saline or betamethasone injections (0.5 mg/kg) at 104, 111, 118, and 124 days of gestation (dG) or a single betamethasone injection at 104 dG followed by saline at 111, 118, and 124 dG. Offspring were catheterized at 2 and 3 yr of age and given corticotrophin-releasing hormone + arginine vasopressin challenges. Adrenal tissue was collected for quantitative RT-PCR mRNA determination at 3.5 yr of age. In 2-yr-old offspring, maternal betamethasone injections did not alter basal ACTH or cortisol levels, but repeated injections elevated ACTH responses. At 3 yr of age, basal ACTH was elevated, and both basal and stimulated cortisol levels were suppressed by repeated maternal injections. Basal and stimulated cortisol-to-ACTH ratios and basal cortisol-to-cytochrome P-450 17alpha-hydroxylase (P450c17) mRNA ratios were suppressed by repeated injections. Repeated fetal betamethasone injections attenuated basal ACTH and cortisol levels in offspring at 2 but not 3 yr of age. Plasma changes were not associated with altered adrenal P450c17, ACTH receptor, beta-hydroxysteroid dehydrogenase, or glucocorticoid receptor mRNA levels. These data suggest that maternal, but not fetal, betamethasone administration results in adrenal suppression in adulthood.
Original languageEnglish
Pages (from-to)E61 - E70
Number of pages10
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume292
Issue number1
DOIs
Publication statusPublished - 2007
Externally publishedYes

Cite this

Sloboda, Deborah M ; Moss, Timothy ; Li, Shaofu ; Doherty, Dorota ; Nitsos, Ilias ; Challis, John ; Newnham, John. / Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep. In: American Journal of Physiology - Endocrinology and Metabolism. 2007 ; Vol. 292, No. 1. pp. E61 - E70.
@article{83a291a40c56465fb5004d8fdedde800,
title = "Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep",
abstract = "Fetal exposure to synthetic glucocorticoids in sheep results in increased fetal hypothalamic-pituitary-adrenal (HPA) activity persisting to one year of age. We aimed to determine the effects of single or repeated maternal or fetal betamethasone injections on offspring HPA activity at 2 and 3 yr of age and whether changes in adrenal mediators of steroidogenesis contribute to changes in pituitary-adrenal function. Pregnant ewes or their fetuses received either repeated intramuscular saline or betamethasone injections (0.5 mg/kg) at 104, 111, 118, and 124 days of gestation (dG) or a single betamethasone injection at 104 dG followed by saline at 111, 118, and 124 dG. Offspring were catheterized at 2 and 3 yr of age and given corticotrophin-releasing hormone + arginine vasopressin challenges. Adrenal tissue was collected for quantitative RT-PCR mRNA determination at 3.5 yr of age. In 2-yr-old offspring, maternal betamethasone injections did not alter basal ACTH or cortisol levels, but repeated injections elevated ACTH responses. At 3 yr of age, basal ACTH was elevated, and both basal and stimulated cortisol levels were suppressed by repeated maternal injections. Basal and stimulated cortisol-to-ACTH ratios and basal cortisol-to-cytochrome P-450 17alpha-hydroxylase (P450c17) mRNA ratios were suppressed by repeated injections. Repeated fetal betamethasone injections attenuated basal ACTH and cortisol levels in offspring at 2 but not 3 yr of age. Plasma changes were not associated with altered adrenal P450c17, ACTH receptor, beta-hydroxysteroid dehydrogenase, or glucocorticoid receptor mRNA levels. These data suggest that maternal, but not fetal, betamethasone administration results in adrenal suppression in adulthood.",
author = "Sloboda, {Deborah M} and Timothy Moss and Shaofu Li and Dorota Doherty and Ilias Nitsos and John Challis and John Newnham",
year = "2007",
doi = "10.1152/ajpendo.00270.2006",
language = "English",
volume = "292",
pages = "E61 -- E70",
journal = "American Journal of Physiology - Endocrinology and Metabolism",
issn = "1522-1555",
publisher = "American Physiological Society",
number = "1",

}

Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep. / Sloboda, Deborah M; Moss, Timothy; Li, Shaofu; Doherty, Dorota; Nitsos, Ilias; Challis, John; Newnham, John.

In: American Journal of Physiology - Endocrinology and Metabolism, Vol. 292, No. 1, 2007, p. E61 - E70.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep

AU - Sloboda, Deborah M

AU - Moss, Timothy

AU - Li, Shaofu

AU - Doherty, Dorota

AU - Nitsos, Ilias

AU - Challis, John

AU - Newnham, John

PY - 2007

Y1 - 2007

N2 - Fetal exposure to synthetic glucocorticoids in sheep results in increased fetal hypothalamic-pituitary-adrenal (HPA) activity persisting to one year of age. We aimed to determine the effects of single or repeated maternal or fetal betamethasone injections on offspring HPA activity at 2 and 3 yr of age and whether changes in adrenal mediators of steroidogenesis contribute to changes in pituitary-adrenal function. Pregnant ewes or their fetuses received either repeated intramuscular saline or betamethasone injections (0.5 mg/kg) at 104, 111, 118, and 124 days of gestation (dG) or a single betamethasone injection at 104 dG followed by saline at 111, 118, and 124 dG. Offspring were catheterized at 2 and 3 yr of age and given corticotrophin-releasing hormone + arginine vasopressin challenges. Adrenal tissue was collected for quantitative RT-PCR mRNA determination at 3.5 yr of age. In 2-yr-old offspring, maternal betamethasone injections did not alter basal ACTH or cortisol levels, but repeated injections elevated ACTH responses. At 3 yr of age, basal ACTH was elevated, and both basal and stimulated cortisol levels were suppressed by repeated maternal injections. Basal and stimulated cortisol-to-ACTH ratios and basal cortisol-to-cytochrome P-450 17alpha-hydroxylase (P450c17) mRNA ratios were suppressed by repeated injections. Repeated fetal betamethasone injections attenuated basal ACTH and cortisol levels in offspring at 2 but not 3 yr of age. Plasma changes were not associated with altered adrenal P450c17, ACTH receptor, beta-hydroxysteroid dehydrogenase, or glucocorticoid receptor mRNA levels. These data suggest that maternal, but not fetal, betamethasone administration results in adrenal suppression in adulthood.

AB - Fetal exposure to synthetic glucocorticoids in sheep results in increased fetal hypothalamic-pituitary-adrenal (HPA) activity persisting to one year of age. We aimed to determine the effects of single or repeated maternal or fetal betamethasone injections on offspring HPA activity at 2 and 3 yr of age and whether changes in adrenal mediators of steroidogenesis contribute to changes in pituitary-adrenal function. Pregnant ewes or their fetuses received either repeated intramuscular saline or betamethasone injections (0.5 mg/kg) at 104, 111, 118, and 124 days of gestation (dG) or a single betamethasone injection at 104 dG followed by saline at 111, 118, and 124 dG. Offspring were catheterized at 2 and 3 yr of age and given corticotrophin-releasing hormone + arginine vasopressin challenges. Adrenal tissue was collected for quantitative RT-PCR mRNA determination at 3.5 yr of age. In 2-yr-old offspring, maternal betamethasone injections did not alter basal ACTH or cortisol levels, but repeated injections elevated ACTH responses. At 3 yr of age, basal ACTH was elevated, and both basal and stimulated cortisol levels were suppressed by repeated maternal injections. Basal and stimulated cortisol-to-ACTH ratios and basal cortisol-to-cytochrome P-450 17alpha-hydroxylase (P450c17) mRNA ratios were suppressed by repeated injections. Repeated fetal betamethasone injections attenuated basal ACTH and cortisol levels in offspring at 2 but not 3 yr of age. Plasma changes were not associated with altered adrenal P450c17, ACTH receptor, beta-hydroxysteroid dehydrogenase, or glucocorticoid receptor mRNA levels. These data suggest that maternal, but not fetal, betamethasone administration results in adrenal suppression in adulthood.

UR - http://ajpendo.physiology.org/content/292/1/E61.full.pdf+html

U2 - 10.1152/ajpendo.00270.2006

DO - 10.1152/ajpendo.00270.2006

M3 - Article

VL - 292

SP - E61 - E70

JO - American Journal of Physiology - Endocrinology and Metabolism

JF - American Journal of Physiology - Endocrinology and Metabolism

SN - 1522-1555

IS - 1

ER -