TY - JOUR
T1 - Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study
AU - Sun, Lei
AU - Zhang, Zhihua
AU - Bailey, Timothy L.
AU - Perkins, Andrew C.
AU - Tallack, Michael R.
AU - Xu, Zhao-Xu
AU - Liu, Hui
PY - 2012/12/13
Y1 - 2012/12/13
N2 - Background: Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions.Results: We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions.Conclusions: Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.
AB - Background: Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions.Results: We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions.Conclusions: Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.
UR - http://www.scopus.com/inward/record.url?scp=84870899078&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-13-331
DO - 10.1186/1471-2105-13-331
M3 - Article
C2 - 23237380
AN - SCOPUS:84870899078
SN - 1471-2105
VL - 13
JO - BMC Bioinformatics
JF - BMC Bioinformatics
IS - 1
M1 - 331
ER -