Prediction of instantaneous flow characteristics of hydrocyclone with long short-term memory network based on computational fluid dynamics data

Dianyu E, Guangtai Xu, Jiaxin Cui, Qing Ye, Cong Tan, Ruiping Zou, Aibing Yu, Shibo Kuang

Research output: Contribution to journalArticleResearchpeer-review

17 Citations (Scopus)

Abstract

Accelerating the prediction time of separation performance and flow field characteristics in industrial hydrocyclones holds paramount importance for real-time control. Machine learning methods exhibit significant advantages in this particular aspect. This study presents a network model that integrates a long short-term memory (LSTM) layer with a fully connected layer to accurately forecast the flow field and separation performance under various operational conditions, leveraging CFD data. The study evaluates the effect of factors such as the number of LSTM layers and neurons per layer on the model's performance, aiming to identify the optimal network structure. The results demonstrate that the predicted flow field and performance of the hydrocyclones using LSTM closely align with the outcomes from CFD simulations. The average absolute percentage error is constrained to within 6%, which significantly enhances the prediction efficiency. The findings contribute to a more efficient and automated separation process in industrial environments.

Original languageEnglish
Article number119668
Number of pages15
JournalPowder Technology
Volume439
DOIs
Publication statusPublished - 15 Apr 2024

Keywords

  • CFD
  • Hydrocyclone
  • LSTM
  • Machine learning
  • Performance prediction
  • ARC Research Hub for Smart Process Design and Control

    Yu, A. (Primary Chief Investigator (PCI)), Strezov, V. (Chief Investigator (CI)), Bao, J. (Chief Investigator (CI)), Wang, G. (Chief Investigator (CI)), Shen, Y. (Chief Investigator (CI)), Rudman, M. (Chief Investigator (CI)), Zhao, D. (Chief Investigator (CI)), Yan, W. (Chief Investigator (CI)), Zou, R. (Chief Investigator (CI)), Chen, C. (Chief Investigator (CI)), Kuang, S. (Chief Investigator (CI)), Selomulya, C. (Chief Investigator (CI)), Yang, R. (Chief Investigator (CI)), Dong, K. (Chief Investigator (CI)), Zhu, H. (Chief Investigator (CI)), Zeng, Q. (Chief Investigator (CI)), Jiang, Y. (Chief Investigator (CI)), Steel, K. (Chief Investigator (CI)), Ma, X. (Chief Investigator (CI)), mingyuan, L. (Chief Investigator (CI)), Evans, T. (Partner Investigator (PI)), Song, S. (Partner Investigator (PI)), Mao, X. (Partner Investigator (PI)), Ye, X. (Partner Investigator (PI)), Cheng, G. (Partner Investigator (PI)), Zhou, Z. (Partner Investigator (PI)), Qiu, T. (Partner Investigator (PI)), Sakai, M. (Partner Investigator (PI)), de Ryck, A. (Partner Investigator (PI)), Luding, S. (Partner Investigator (PI)) & Ching, T. (Project Manager)

    ARC - Australian Research Council, Monash University – Internal Faculty Contribution, Rio Tinto Services Limited (Australia)

    10/01/2410/01/29

    Project: Research

Cite this