Projects per year
Abstract
Accelerating the prediction time of separation performance and flow field characteristics in industrial hydrocyclones holds paramount importance for real-time control. Machine learning methods exhibit significant advantages in this particular aspect. This study presents a network model that integrates a long short-term memory (LSTM) layer with a fully connected layer to accurately forecast the flow field and separation performance under various operational conditions, leveraging CFD data. The study evaluates the effect of factors such as the number of LSTM layers and neurons per layer on the model's performance, aiming to identify the optimal network structure. The results demonstrate that the predicted flow field and performance of the hydrocyclones using LSTM closely align with the outcomes from CFD simulations. The average absolute percentage error is constrained to within 6%, which significantly enhances the prediction efficiency. The findings contribute to a more efficient and automated separation process in industrial environments.
| Original language | English |
|---|---|
| Article number | 119668 |
| Number of pages | 15 |
| Journal | Powder Technology |
| Volume | 439 |
| DOIs | |
| Publication status | Published - 15 Apr 2024 |
Keywords
- CFD
- Hydrocyclone
- LSTM
- Machine learning
- Performance prediction
Projects
- 1 Active
-
ARC Research Hub for Smart Process Design and Control
Yu, A. (Primary Chief Investigator (PCI)), Strezov, V. (Chief Investigator (CI)), Bao, J. (Chief Investigator (CI)), Wang, G. (Chief Investigator (CI)), Shen, Y. (Chief Investigator (CI)), Rudman, M. (Chief Investigator (CI)), Zhao, D. (Chief Investigator (CI)), Yan, W. (Chief Investigator (CI)), Zou, R. (Chief Investigator (CI)), Chen, C. (Chief Investigator (CI)), Kuang, S. (Chief Investigator (CI)), Selomulya, C. (Chief Investigator (CI)), Yang, R. (Chief Investigator (CI)), Dong, K. (Chief Investigator (CI)), Zhu, H. (Chief Investigator (CI)), Zeng, Q. (Chief Investigator (CI)), Jiang, Y. (Chief Investigator (CI)), Steel, K. (Chief Investigator (CI)), Ma, X. (Chief Investigator (CI)), mingyuan, L. (Chief Investigator (CI)), Evans, T. (Partner Investigator (PI)), Song, S. (Partner Investigator (PI)), Mao, X. (Partner Investigator (PI)), Ye, X. (Partner Investigator (PI)), Cheng, G. (Partner Investigator (PI)), Zhou, Z. (Partner Investigator (PI)), Qiu, T. (Partner Investigator (PI)), Sakai, M. (Partner Investigator (PI)), de Ryck, A. (Partner Investigator (PI)), Luding, S. (Partner Investigator (PI)) & Ching, T. (Project Manager)
ARC - Australian Research Council, Monash University – Internal Faculty Contribution, Rio Tinto Services Limited (Australia)
10/01/24 → 10/01/29
Project: Research