Prediction of drug solubility from molecular structure using a drug-like training set

J Huuskonen, David J Livingstone, David Thomas Manallack

Research output: Contribution to journalArticleResearchpeer-review

35 Citations (Scopus)

Abstract

Using a training set of 191 drug-like compounds extracted from the AQUASOL database a quantitative structure-property relationship (QSPR) study was conducted employing a set of simple structural and physicochemical properties to predict aqueous solubility. The resultant regression model comprised five parameters (ClogP, molecular weight, indicator variable for aliphatic amine groups, number of rotatable bonds and number of aromatic rings) and demonstrated acceptable statistics (r(2) = 0.87, s = 0.51, F = 243.6, n = 191). The model was applied to two test sets consisting of a drug-like set of compounds (r2 = 0.80, s = 0.68, n = 174) and a set of agrochemicals (r(2) = 0.88, s = 0.65, n = 200). Using the established general solubility equation (GSE) on the training and drug-like test set gave poorer results than the current study. The agrochemical test set was predicted with equal accuracy using the GSE and the QSPR equation. The results of this study suggest that increasing molecular size, rigidity and lipophilicity decrease solubility whereas increasing conformational flexibility and the presence of a non-conjugated amine group increase the solubility of drug-like compounds. Indeed, the proposed structural parameters make physical sense and provide simple guidelines for modifying solubility during lead optimisation.
Original languageEnglish
Pages (from-to)191 - 212
Number of pages22
JournalSAR and QSAR in Environmental Research
Volume19
Issue number3-4
Publication statusPublished - 2008

Cite this