TY - JOUR
T1 - Preclinical small molecule WEHI-7326 overcomes drug resistance and elicits response in patient-derived xenograft models of human treatment-refractory tumors
AU - Grohmann, Christoph
AU - Walker, Francesca
AU - Devlin, Mark
AU - Luo, Meng Xiao
AU - Chüeh, Anderly C.
AU - Doherty, Judy
AU - Vaillant, François
AU - Ho, Gwo Yaw
AU - Wakefield, Matthew J.
AU - Weeden, Clare E.
AU - Kamili, Alvin
AU - Murray, Jayne
AU - Po’uha, Sela T.
AU - Weinstock, Janet
AU - Kane, Serena R.
AU - Faux, Maree C.
AU - Broekhuizen, Esmee
AU - Zheng, Ye
AU - Shield-Artin, Kristy
AU - Kershaw, Nadia J.
AU - Tan, Chin Wee
AU - Witchard, Helen M.
AU - Ebert, Gregor
AU - Charman, Susan A.
AU - Street, Ian
AU - Kavallaris, Maria
AU - Haber, Michelle
AU - Fletcher, Jamie I.
AU - Asselin-Labat, Marie Liesse
AU - Scott, Clare L.
AU - Visvader, Jane E.
AU - Lindeman, Geoffrey J.
AU - Watson, Keith G.
AU - Burgess, Antony W.
AU - Lessene, Guillaume
PY - 2021/3/12
Y1 - 2021/3/12
N2 - Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.
AB - Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.
UR - http://www.scopus.com/inward/record.url?scp=85102530661&partnerID=8YFLogxK
U2 - 10.1038/s41419-020-03269-0
DO - 10.1038/s41419-020-03269-0
M3 - Article
C2 - 33712556
AN - SCOPUS:85102530661
SN - 2041-4889
VL - 12
JO - Cell Death & Disease
JF - Cell Death & Disease
IS - 3
M1 - 268
ER -