Projects per year
Abstract
2D platinum diselenide (PtSe2) has received significant attention for 2D transistor applications due to its high carrier mobility. Here, using molecular beam epitaxy, the growth of 2D PtSe2 is investigated on highly oriented pyrolytic graphite (HOPG) and their electronic properties are unveiled via X-ray photoelectron spectroscopy, Raman spectra, and scanning tunnelling microscopy/spectroscopy as well as density functional theory (DFT) calculations. PtSe2 adopts a layer-by-layer growth mode on HOPG and shows a decreasing bandgap with increasing layer number. For the layer numbers from one to four, PtSe2 has bandgaps of 2.0 ± 0.1, 1.1 ± 0.1, 0.6 ± 0.1, and 0.20 ± 0.1 eV, respectively, and becomes semimetal from the fifth layer. DFT calculations reproduce the layer-dependent evolution of both the bandgap and band edges, suggest an indirect bandgap structure, and elucidate the underlying physics at the atomic level.
Original language | English |
---|---|
Article number | 2100559 |
Number of pages | 7 |
Journal | Advanced Electronic Materials |
Volume | 7 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2021 |
Keywords
- 2D materials
- density functional theory calculations
- molecular beam epitaxy
- platinum diselenide
- scanning tunneling microscopy/spectroscopy
Projects
- 1 Active
-
ARC Centre of Excellence in Future Low-energy Electronics Technologies
Fuhrer, M., Bao, Q., Culcer, D., Davis, M., Davis, J. A., Hamilton, A., Helmerson, K., Klochan, O., Medhekar, N., Ostrovskaya, E., Parish, M., Schiffrin, A., Seidel, J., Sushkov, O., Valanoor, N., Vale, C., Wang, X., Wang, L., Galitskiy, V., Gurarie, V., Hannon, J., Höfling, S., Hone, J., Rule, K. C., Krausz, F., Littlewood, P., MacDonald, A., Neto, A., Oezyilmaz, B., Paglione, J., Phillips, W., Spielman, I., Tadich, A., Xue, Q., Cole, J., Perali, A., Neilson, D., Sek, G., Gaston, N., Hodgkiss, J. M., Tang, M., Karel, J., Nguyen, T., Adam, S., Granville, S. & Kumar, P.
Australian Research Council (ARC), Monash University – Internal School Contribution, Monash University – Internal Department Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal University Contribution, University of Wollongong, University of Queensland , Tsinghua University, University of New South Wales (UNSW), Australian National University (ANU), RMIT University, Swinburne University of Technology
29/06/17 → 28/06/24
Project: Research