Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al–Mn–Sc alloy fabricated by selective laser melting

Qingbo Jia, Fan Zhang, Paul Rometsch, Jingwei Li, Jitendra Mata, Matthew Weyland, Laure Bourgeois, Manling Sui, Xinhua Wu

Research output: Contribution to journalArticleResearchpeer-review

110 Citations (Scopus)


The dynamic metallurgical characteristics of the selective laser melting (SLM) process offer fabricated materials with non-equilibrium microstructures compared to their cast and wrought counterparts. To date, few studies on the precipitation kinetics of SLM processed heat-treatable alloys have been reported, despite the importance of obtaining such detailed knowledge for optimizing the mechanical properties. In this study, for the first time, the precipitation behavior of an SLM fabricated Al–Mn–Sc alloy was systematically investigated over the temperature range of 300–450 °C. The combination of in-situ synchrotron-based ultra-small angle X-ray scattering (USAXS), small angle X-ray scattering (SAXS) and X-ray diffraction (XRD) revealed the continuous evolution of Al6Mn and Al3Sc precipitates upon isothermal heating in both precipitate structure and morphology, which was confirmed by ex-situ transmission electron microscopy (TEM) studies. A pseudo-delay nucleation and growth phenomenon of the Al3Sc precipitates was observed for the SLM fabricated Al–Mn–Sc alloy. This phenomenon was attributed to the pre-formed Sc clusters in the as-fabricated condition due to the intrinsic heat treatment effect induced by the unique layer-by-layer building nature of SLM. The growth kinetics for the Al6Mn and Al3Sc precipitates were established based on the in-situ X-ray studies, with the respective activation energies determined to be (74 ± 4) kJ/mol and (63 ± 9) kJ/mol. The role of the precipitate evolution on the final mechanical properties was evaluated by tensile testing, and an observed discontinuous yielding phenomenon was effectively alleviated with increased aging temperatures.

Original languageEnglish
Pages (from-to)239-251
Number of pages13
JournalActa Materialia
Publication statusPublished - Jul 2020


  • Aluminum alloy
  • In situ small angle X-ray scattering
  • Precipitation kinetics
  • Scandium
  • Selective laser melting

Cite this