Powerful antibacterial activity of phenyl-thiolatobismuth(III) complexes derived from oxadiazolethiones

Ahmad Luqman, Victoria Louise Blair, Rajini Brammananth, Paul Kaighin Crellin, Ross Leon Coppel, Philip Craig Andrews

Research output: Contribution to journalArticleResearchpeer-review

17 Citations (Scopus)


Seven novel 5-substituted phenylthiazole oxadiazolethiones: [Me-PTOT(H)], [MeO-PTOT(H)], [MeS-PTOT(H)], [F-PTOT(H)], [Cl-PTOT(H)], [Br-PTOT(H)], and [CF3-PTOT(H)], {where X-PTOT(H) = 5-[2-(4-X)thiazol-4-yl]-1,3,4-oxadiazole-2(3H)-thione, 4-X = C6H4}, were synthesised from their corresponding thioamides. From these seven heteroleptic thiolatobismuth complexes: BiPh(Me-PTOT)2 6, BiPh(MeO-PTOT)2 7, BiPh(MeS-PTOT)2 8, BiPh(F-PTOT)2 9, BiPh(Cl-PTOT)2 10, BiPh(Br-PTOT)2 11 and BiPh(CF3-PTOT)2 12 were synthesised and characterised. Complexes [10(DMSO)2] and [11(DMSO)2] were structurally characterised using X-ray diffraction. Evaluation of the antibacterial properties of the thiones and their BiIII complexes against Mycobacterium smegmatis, Staphylococcus aureus (S. aureus), Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococcus (VRE), Enterococcus faecalis (E. faecalis) and Escherichia coli (E. coli) showed that all bismuth(III) complexes were highly effective against all the bacteria, as demonstrated by very low MIC values (1.1-2.1 μM). Complexes BiPh(Me-PTOT)2 6, BiPh(Cl-PTOT)2 10 and BiPh(Br-PTOT)2 11, showed best activity against the multi-drug resistant bacteria VRE and MRSA with an MIC value of 1.0 μM. All these complexes and their corresponding thiones failed to show any prominent activity against M. smegmatis and E. coli, even at high concentrations. These complexes showed little or no toxicity towards mammalian COS-7 cells at 20 μg/mL. Seven heteroleptic thiolatobismuth(III) complexes [BiPh(X-PTOT)2] derived from a series of 5-substituted phenylthiazole oxadiazolethiones [X-PTOT(H)] provide powerful antibacterial action against the multi-resistant bacteria MRSA and VRE
Original languageEnglish
Pages (from-to)4935-4945
Number of pages11
JournalEuropean Journal of Inorganic Chemistry
Issue number29
Publication statusPublished - 2015


  • Drug design
  • Antibiotics
  • Medicinal chemistry
  • Bismuth
  • Sulfur heterocycles
  • Nitrogen heterocycles

Cite this