TY - JOUR
T1 - Posttemperature effects on shaft capacity of a full-scale geothermal energy pile
AU - Wang, Bill
AU - Bouazza, Abdelmalek
AU - Singh, Rao Martand
AU - Haberfield, Christopher Michael
AU - Barry-Macaulay, David
AU - Baycan, Serhat
PY - 2015/4
Y1 - 2015/4
N2 - Shallow geothermal heat exchangers integrated in structural pile foundations have the capability of being an efficient and cost-effective solution to cater for the energy demand for heating and cooling of built structures. However, limited information is available on the effects of temperature on the geothermal energy pile load capacity. This paper discusses a field pile test aimed at assessing the impact of thermomechanical loads on the shaft capacity of a geothermal energy pile. The full-scale in situ geothermal energy pile equipped with ground loops for heating/cooling and multilevel Osterberg cells for static load testing was installed at Monash University, Melbourne, Australia in a sandy profile. Strain gauges, thermistors, and displacement transducers were also installed to study the behavior of the energy pile during the thermal and mechanical loading periods. It has been found that the pile shaft capacity increased after the pile was heated and returned to the initial capacity (i.e., initial conditions) when the pile was allowed to cool naturally. This indicated that no losses in pile shaft capacity were observed after heating and cooling cycles. Avariance in average vertical thermal strains was observed along the upper section of the pile shaft at the end of the heating periods. These were almost fully recovered at the end of the cooling periods, indicating that they are of an elastic nature. Pile average circumferential strains were found to be relatively uniform at the end of the heating and cooling periods and did not change with depth. They, also, were fully recovered during the cooling period. It was also observed that the increase of temperature during the heating periods prompted the pile shaft to expand radially. Subsequently, as the pile cooled down, the pile shaft slowly contracted and returned closely to its original condition, suggesting a thermoelastic behavior.
AB - Shallow geothermal heat exchangers integrated in structural pile foundations have the capability of being an efficient and cost-effective solution to cater for the energy demand for heating and cooling of built structures. However, limited information is available on the effects of temperature on the geothermal energy pile load capacity. This paper discusses a field pile test aimed at assessing the impact of thermomechanical loads on the shaft capacity of a geothermal energy pile. The full-scale in situ geothermal energy pile equipped with ground loops for heating/cooling and multilevel Osterberg cells for static load testing was installed at Monash University, Melbourne, Australia in a sandy profile. Strain gauges, thermistors, and displacement transducers were also installed to study the behavior of the energy pile during the thermal and mechanical loading periods. It has been found that the pile shaft capacity increased after the pile was heated and returned to the initial capacity (i.e., initial conditions) when the pile was allowed to cool naturally. This indicated that no losses in pile shaft capacity were observed after heating and cooling cycles. Avariance in average vertical thermal strains was observed along the upper section of the pile shaft at the end of the heating periods. These were almost fully recovered at the end of the cooling periods, indicating that they are of an elastic nature. Pile average circumferential strains were found to be relatively uniform at the end of the heating and cooling periods and did not change with depth. They, also, were fully recovered during the cooling period. It was also observed that the increase of temperature during the heating periods prompted the pile shaft to expand radially. Subsequently, as the pile cooled down, the pile shaft slowly contracted and returned closely to its original condition, suggesting a thermoelastic behavior.
UR - http://ascelibrary.org/doi/pdf/10.1061/(ASCE)GT.1943-5606.0001266
U2 - 10.1061/(ASCE)GT.1943-5606.0001266
DO - 10.1061/(ASCE)GT.1943-5606.0001266
M3 - Article
VL - 141
SP - 1
EP - 12
JO - Journal of Geotechnical and Geoenvironmental Engineering
JF - Journal of Geotechnical and Geoenvironmental Engineering
SN - 1090-0241
IS - 4
ER -