Projects per year
Abstract
The adenosine A1 receptor (A1R) is a promising therapeutic target for non-opioid analgesic agents to treat neuropathic pain1,2. However, development of analgesic orthosteric A1R agonists has failed because of a lack of sufficient on-target selectivity as well as off-tissue adverse effects3. Here we show that [2-amino-4-(3,5-bis(trifluoromethyl)phenyl)thiophen-3-yl)(4-chlorophenyl)methanone] (MIPS521), a positive allosteric modulator of the A1R, exhibits analgesic efficacy in rats in vivo through modulation of the increased levels of endogenous adenosine that occur in the spinal cord of rats with neuropathic pain. We also report the structure of the A1R co-bound to adenosine, MIPS521 and a Gi2 heterotrimer, revealing an extrahelical lipid–detergent-facing allosteric binding pocket that involves transmembrane helixes 1, 6 and 7. Molecular dynamics simulations and ligand kinetic binding experiments support a mechanism whereby MIPS521 stabilizes the adenosine–receptor–G protein complex. This study provides proof of concept for structure-based allosteric drug design of non-opioid analgesic agents that are specific to disease contexts.
Original language | English |
---|---|
Pages (from-to) | 571–576 |
Number of pages | 25 |
Journal | Nature |
Volume | 597 |
DOIs | |
Publication status | Published - 23 Sept 2021 |
-
ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins for Drug Discovery
Sexton, P., Rouiller, I., Wootten, D., van Oijen, A., Parker, M. W., Lucet, I., Griffin, M. D. W., Adams, D. J., Czabotar, P. E., Flocco, M., Han, S., Shepherd, R., Ciferri, C., Williams, P. A., Brown, D., Schreuder, H., Reedtz-Runge, S., Drinkwater, C., Howard, B. L., Betigeri, G., Pryor, E., How, J. & Christopoulos, T.
Boehringer Ingelheim (Germany), AstraZeneca (United Kingdom)
23/03/21 → 23/03/27
Project: Research
-
Adenosine A1 receptor modulation: Structure, dynamics & novel pharmacological interventions
Christopoulos, A., May, L., Imlach, W., Hill, S. & Scott, D.
1/01/18 → 31/12/22
Project: Research
-
Adenosine Receptor Context-Specific Biased Agonism to Treat Ischaemic Heart Disease
May, L., White, P. & Kompa, A.
1/01/18 → 31/12/20
Project: Research
Equipment
-
MASSIVE
David Powell (Manager) & Gin Tan (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility