Porous carbon composites for next generation rechargeable lithium batteries

Hao Liu, Xiaoxue Liu, Wei Li, Xin Guo, Yong Wang, Guoxiu Wang, Dongyuan Zhao

Research output: Contribution to journalArticleResearchpeer-review

156 Citations (Scopus)


Rechargeable lithium batteries have attracted great attention as next generation power systems for electric vehicles (EVs). Lithium ion batteries, lithium-sulfur batteries, and lithium-oxygen batteries are all suitable to be the power systems for next generation EVs, but their power densities and cycling performance still need to be improved to match the requirements of practical EVs. Thus, rational design and controllable synthesis of electrode materials with unique microstructure and outstanding electrochemical performance are crucially desired. Porous carbon-based composites have many advantages for energy storage and conversion owing to their unique properties, including high electronic conductivity, high structural stability, high specific surface area, large pore volume for efficient electrolyte flux, and high reactive electrode materials with controllable size confined by porous carbon frameworks. Therefore, porous carbon composites exhibit excellent performance as electrode materials for lithium ion batteries, lithium-sulfur batteries, and lithium-oxygen batteries. In this review, we summarize research progress on porous carbon composites with enhanced performance for rechargeable lithium batteries. We present the detailed synthesis, physical and chemical properties, and the innovation and significance of porous carbon composites for lithium ion batteries, lithium-sulfur batteries, and lithium-oxygen batteries. Finally, we conclude the perspectives and critical challenges that need to be addressed for the commercialization of rechargeable lithium batteries.

Original languageEnglish
Article number1700283
Number of pages24
JournalAdvanced Energy Materials
Issue number24
Publication statusPublished - 20 Dec 2017
Externally publishedYes


  • Lithium ion batteries
  • Lithium-oxygen batteries
  • Lithium-sulfur batteries
  • Mesoporous composites
  • Porous carbon

Cite this