TY - JOUR
T1 - Population Properties of Gravitational-wave Neutron Star-Black Hole Mergers
AU - Zhu, Jin Ping
AU - Wu, Shichao
AU - Qin, Ying
AU - Zhang, Bing
AU - Gao, He
AU - Cao, Zhoujian
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Over the course of the third observing run of the LIGO-Virgo-KAGRA Collaboration, several gravitational-wave (GW) neutron star-black hole (NSBH) candidates have been announced. By assuming that these candidates are real signals with astrophysical origins, we analyze the population properties of the mass and spin distributions for GW NSBH mergers. We find that the primary BH mass distribution of NSBH systems, whose shape is consistent with that inferred from the GW binary BH (BBH) primaries, can be well described as a power law with an index of α=4.8-2.8+4.5 plus a high-mass Gaussian component peaking at ∼33-9+14M⊙ . The NS mass spectrum could be shaped as a nearly flat distribution between ∼1.0 and 2.1 M ⊙. The constrained NS maximum mass agrees with that inferred from NSs in our Galaxy. If GW190814 and GW200210 are NSBH mergers, the posterior results of the NS maximum mass would be always larger than ∼2.5 M ⊙ and significantly deviate from that inferred in Galactic NSs. The effective inspiral spin and effective precession spin of GW NSBH mergers are measured to potentially have near-zero distributions. The negligible spins for GW NSBH mergers imply that most events in the universe should be plunging events, which support the standard isolated formation channel of NSBH binaries. More NSBH mergers to be discovered in the fourth observing run would help to more precisely model the population properties of cosmological NSBH mergers.
AB - Over the course of the third observing run of the LIGO-Virgo-KAGRA Collaboration, several gravitational-wave (GW) neutron star-black hole (NSBH) candidates have been announced. By assuming that these candidates are real signals with astrophysical origins, we analyze the population properties of the mass and spin distributions for GW NSBH mergers. We find that the primary BH mass distribution of NSBH systems, whose shape is consistent with that inferred from the GW binary BH (BBH) primaries, can be well described as a power law with an index of α=4.8-2.8+4.5 plus a high-mass Gaussian component peaking at ∼33-9+14M⊙ . The NS mass spectrum could be shaped as a nearly flat distribution between ∼1.0 and 2.1 M ⊙. The constrained NS maximum mass agrees with that inferred from NSs in our Galaxy. If GW190814 and GW200210 are NSBH mergers, the posterior results of the NS maximum mass would be always larger than ∼2.5 M ⊙ and significantly deviate from that inferred in Galactic NSs. The effective inspiral spin and effective precession spin of GW NSBH mergers are measured to potentially have near-zero distributions. The negligible spins for GW NSBH mergers imply that most events in the universe should be plunging events, which support the standard isolated formation channel of NSBH binaries. More NSBH mergers to be discovered in the fourth observing run would help to more precisely model the population properties of cosmological NSBH mergers.
UR - http://www.scopus.com/inward/record.url?scp=85128732097&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac540c
DO - 10.3847/1538-4357/ac540c
M3 - Article
AN - SCOPUS:85128732097
SN - 0004-637X
VL - 928
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 2
M1 - 167
ER -