TY - JOUR
T1 - Poly(vinyl ester) star polymers via xanthate-mediated living radical polymerization
T2 - From poly(vinyl alcohol) to glycopolymer stars
AU - Bernard, Julien
AU - Favier, Arnaud
AU - Zhang, Ling
AU - Nilasaroya, Anastasia
AU - Davis, Thomas P.
AU - Barner-Kowollik, Christopher
AU - Stenzel, Martina H.
PY - 2005/6/28
Y1 - 2005/6/28
N2 - PolyCvinyl ester) stars have been synthesized via different macromolecular design via interchange of xanthate (MADIX)/reversible addition-fragmentation chain transfer (RAFT) polymerization methodologies. Two approaches were investigated. The first method involved attaching the xanthate functionality to the core via a nonfragmenting covalent bond (Z-group approach). The second approach involved attaching the xanthate functionality to the core via a fragmenting covalent bond (R-group approach). The R-group approach yielded well-defined poly(vinyl acetate), poly(vinyl pivalate), and poly-(vinyl neodecanoate) stars with narrow polydispersities (PDI ≤ 1.4). In contrast, the molecular weight distributions of poly(vinyl acetate) stars prepared using the Z-approach tended to broaden at moderate to high conversions. We attribute this broadening to steric congestion around the xanthate functionality, restricting the access of monomer to the C=S bonds. The R-group approach was also found to be superior for preparing precursor stars suitable for hydrolysis to poly(vinyl alcohol). Hydrolysis of stars generated by the Z-group approach resulted in destruction of the architecture, as the process also cleaved the xanthate linkage at the nexus of the arms and core. Preliminary experiments on using the R-group approach to mediate the star-polymerization of vinyl-functional glycomonomers demonstrated the possibility of generating complex glycopolymer architectures. However, some significant problems were observed, and this synthetic approach requires further optimization.
AB - PolyCvinyl ester) stars have been synthesized via different macromolecular design via interchange of xanthate (MADIX)/reversible addition-fragmentation chain transfer (RAFT) polymerization methodologies. Two approaches were investigated. The first method involved attaching the xanthate functionality to the core via a nonfragmenting covalent bond (Z-group approach). The second approach involved attaching the xanthate functionality to the core via a fragmenting covalent bond (R-group approach). The R-group approach yielded well-defined poly(vinyl acetate), poly(vinyl pivalate), and poly-(vinyl neodecanoate) stars with narrow polydispersities (PDI ≤ 1.4). In contrast, the molecular weight distributions of poly(vinyl acetate) stars prepared using the Z-approach tended to broaden at moderate to high conversions. We attribute this broadening to steric congestion around the xanthate functionality, restricting the access of monomer to the C=S bonds. The R-group approach was also found to be superior for preparing precursor stars suitable for hydrolysis to poly(vinyl alcohol). Hydrolysis of stars generated by the Z-group approach resulted in destruction of the architecture, as the process also cleaved the xanthate linkage at the nexus of the arms and core. Preliminary experiments on using the R-group approach to mediate the star-polymerization of vinyl-functional glycomonomers demonstrated the possibility of generating complex glycopolymer architectures. However, some significant problems were observed, and this synthetic approach requires further optimization.
UR - http://www.scopus.com/inward/record.url?scp=22744446103&partnerID=8YFLogxK
U2 - 10.1021/ma050050u
DO - 10.1021/ma050050u
M3 - Article
AN - SCOPUS:22744446103
SN - 0024-9297
VL - 38
SP - 5475
EP - 5484
JO - Macromolecules
JF - Macromolecules
IS - 13
ER -