Projects per year
Abstract
H2S-releasing polymers with an acyl-protected perthiol chain terminus were prepared using a simple, high yielding end-group modification process. Specifically, benzodithioate-terminated poly(oligoethylene glycol methyl ether) methacrylate (POEGMA) was first converted to pyridyl-2-disulfide-terminated polymer, after which a thiol-disulfide exchange reaction with thiobenzoic acid yielded an acyl protected perthiol at the chain terminus. The same approach was successfully applied to a hydrophilic-hydrophobic block polymer, P[OEGMA-block-n-butyl methacrylate], and a pH-responsive block copolymer, P[OEGMA-co-N,N-(dimethylamino) ethyl methacrylate-block-N,N-(diisopropylamino)ethyl methacrylate]. All polymers were shown to release H2S when exposed to thiol (l-cysteine), with release rate dependent on polymer structure. In the case of the pH-responsive block copolymer there was minimal release of H2S under conditions where the polymers were micellised, whereas there was rapid, sustained release when the block copolymers were in unimeric form. These materials were shown to increase the intracellular concentration of H2S when applied to HEK cells, and may be useful for interrogating localized delivery of H2S.
Original language | English |
---|---|
Pages (from-to) | 6362-6367 |
Number of pages | 6 |
Journal | Polymer Chemistry |
Volume | 8 |
Issue number | 41 |
DOIs | |
Publication status | Published - 7 Nov 2017 |
Projects
- 1 Finished
-
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
Davis, T., Boyd, B., Bunnett, N., Porter, C., Caruso, F., Kent, S., Thordarson, P., Kearnes, M., Gooding, J., Kavallaris, M., Thurecht, K., Whittaker, A. K., Parton, R., Corrie, S. R., Johnston, A., McGhee, J., Greguric, I. D., Stevens, M. M., Lewis, J. S., Lee, D. S., Alexander, C., Dawson, K., Hawker, C., Haddleton, D., Thierry, B., Prestidge, C. A., Meyer, A., Jones-Jayasinghe, N., Voelcker, N., Nann, T. & McLean, K.
Australian Research Council (ARC), Monash University, University of Melbourne, University of New South Wales (UNSW), University of Queensland , University of South Australia, Monash University – Internal Faculty Contribution, University of Wisconsin Madison, Memorial Sloan Kettering Cancer Center, University of California System, University College Dublin, Imperial College London, University of Warwick, SungKyunKwan University, Australian Nuclear Science and Technology Organisation (ANSTO) , University of Nottingham
30/06/14 → 29/06/21
Project: Research