Polymeric filomicelles and nanoworms

Two decades of synthesis and application

Research output: Contribution to journalReview ArticleResearchpeer-review

51 Citations (Scopus)

Abstract

Filomicelles and nanoworms are an emerging subclass of nanomaterials with a special elongated shape. The physical properties of a filomicelle are distinct from a traditional spherical micelle, and as such have attracted tremendous interest in a variety of research areas. In this review, we highlight the substantial progress in the synthesis and application of polymeric nanoworms over the past two decades. Synthetic techniques summarized in this review are particle replication in nonwetting templates (PRINT), film stretching, self-assembly (SA), crystallization-driven self-assembly (CDSA), polymerization-induced self-assembly (PISA), and temperature-induced morphological transformation (TIMT). The applications of filomicelles as (i) templates for inorganic nanoparticles, (ii) building blocks for superstructures, (iii) synthetic dendritic cells for immunotherapy, (iv) constituents of thermoresponsive gels for biomedical applications, and (v) nanocarriers for cancer drug delivery are subsequently discussed. In the conclusion, we describe the current trajectory of research in the field and identify areas where further developments are of urgent need.

Original languageEnglish
Pages (from-to)4295-4312
Number of pages18
JournalPolymer Chemistry
Volume7
Issue number26
DOIs
Publication statusPublished - 14 Jul 2016

Keywords

  • Medical applications
  • Nanoparticles
  • Biomedical applications
  • Cancer drug deliveries
  • Inorganic nanoparticle
  • Morphological transformations
  • Nonwetting templates
  • Synthetic techniques
  • Temperature-induced
  • Thermoresponsive gel
  • Self assembly

Cite this

@article{5956a05e141c42fcb4a02a9988aaa917,
title = "Polymeric filomicelles and nanoworms: Two decades of synthesis and application",
abstract = "Filomicelles and nanoworms are an emerging subclass of nanomaterials with a special elongated shape. The physical properties of a filomicelle are distinct from a traditional spherical micelle, and as such have attracted tremendous interest in a variety of research areas. In this review, we highlight the substantial progress in the synthesis and application of polymeric nanoworms over the past two decades. Synthetic techniques summarized in this review are particle replication in nonwetting templates (PRINT), film stretching, self-assembly (SA), crystallization-driven self-assembly (CDSA), polymerization-induced self-assembly (PISA), and temperature-induced morphological transformation (TIMT). The applications of filomicelles as (i) templates for inorganic nanoparticles, (ii) building blocks for superstructures, (iii) synthetic dendritic cells for immunotherapy, (iv) constituents of thermoresponsive gels for biomedical applications, and (v) nanocarriers for cancer drug delivery are subsequently discussed. In the conclusion, we describe the current trajectory of research in the field and identify areas where further developments are of urgent need.",
keywords = "Medical applications, Nanoparticles, Biomedical applications, Cancer drug deliveries, Inorganic nanoparticle, Morphological transformations, Nonwetting templates, Synthetic techniques, Temperature-induced, Thermoresponsive gel, Self assembly",
author = "{Truong Phuoc}, Nghia and J.F. Quinn and M.R. Whittaker and T.P. Davis",
note = "Export Date: 25 July 2016 Correspondence Address: Truong, N.P.; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University ParkvilleAustralia; email: nghia.truong@monash.edu Funding Details: ARC, Australian Research Council References: Wen, X., Tang, L.M., Li, B.T., (2014) Chem.-Asian J., 9, pp. 2975-2983; Qiu, H.B., Hudson, Z.M., Winnik, M.A., Manners, I., (2015) Science, 347, pp. 1329-1332; Mandal, S., Eksteen-Akeroyd, Z.H., Jacobs, M.J., Hammink, R., Koepf, M., Lambeck, A.J.A., Van Hest, J.C.M., Rowan, A.E., (2013) Chem. Sci., 4, pp. 4168-4174; Canton, I., Warren, N.J., Chahal, A., Amps, K., Wood, A., Weightman, R., Wang, E., Armes, S.P., (2016) ACS Cent. Sci., 2, pp. 65-74; Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., Discher, D.E., (2007) Nat. Nanotechnol., 2, pp. 249-255; Truong, N.P., Whittaker, M.R., Anastasaki, A., Haddleton, D.M., Quinn, J.F., Davis, T.P., (2016) Polym. Chem., 7, pp. 430-440; Zhulina, E.B., Borisov, O.V., (2012) Macromolecules, 45, pp. 4429-4440; Termonia, Y., (2002) J. Polym. Sci., Part B: Polym. Phys., 40, pp. 890-895; Blanazs, A., Armes, S.P., Ryan, A.J., (2009) Macromol. Rapid Commun., 30, pp. 267-277; Israelachvili, J.N., (2011) Intermolecular and Surface Forces, pp. 1-674. , 3rd edn; Canelas, D.A., Herlihy, K.P., Desimone, J.M., (2009) WIREs Nanomed. Nanobiotechnol., 1, pp. 391-404; Xu, J., Wong, D.H.C., Byrne, J.D., Chen, K., Bowerman, C., Desimone, J.M., (2013) Angew. Chem., Int. Ed., 52, pp. 6580-6589; Rolland, J.P., Maynor, B.W., Euliss, L.E., Exner, A.E., Denison, G.M., Desimone, J.M., (2005) J. Am. Chem. Soc., 127, pp. 10096-10100; Hunziker, P., (2015) WIREs Nanomed. Nanobiotechnol., 7, pp. 169-188; Wang, Y.P., Merkel, T.J., Chen, K., Fromen, C.A., Betts, D.E., Desimone, J.M., (2011) Langmuir, 27, pp. 524-528; Kelly, J.Y., Desimone, J.M., (2008) J. Am. Chem. Soc., 130, pp. 5438-5439; Reuter, K.G., Perry, J.L., Kim, D., Luft, J.C., Liu, R., Desimone, J.M., (2015) Nano Lett., 15, pp. 6371-6378; Morton, S.W., Herlihy, K.P., Shopsowitz, K.E., Deng, Z.J., Chu, K.S., Bowerman, C.J., Desimone, J.M., Hammond, P.T., (2013) Adv. Mater., 25, pp. 4707-4713; Wang, J.Y., Wang, Y., Sheiko, S.S., Betts, D.E., Desimone, J.M., (2012) J. Am. Chem. Soc., 134, pp. 5801-5806; Qian, J.S., Zhang, M., Manners, I., Winnik, M.A., (2010) Trends Biotechnol., 28, pp. 84-92; Ho, C.C., Keller, A., Odell, J.A., Ottewill, R.H., (1993) Colloid Polym. Sci., 271, pp. 469-479; Ho, C.C., Keller, A., Odell, J.A., Ottewill, R.H., (1993) Polym. Int., 30, pp. 207-211; Champion, J.A., Katare, Y.K., Mitragotri, S., (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 11901-11904; Zhou, Z.M., Anselmo, A.C., Mitragotri, S., (2013) Adv. Mater., 25, pp. 2723-2727; Yoo, J.W., Mitragotri, S., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 11205-11210; Cameron, N.S., Corbierre, M.K., Eisenberg, A., (1999) Can. J. Chem., 77, pp. 1311-1326; Bates, F.S., Fredrickson, G.H., (1999) Phys. Today, 52, pp. 32-38; Zhang, S.G., (2003) Nat. Biotechnol., 21, pp. 1171-1178; Rizis, G., Van De Ven, T.G.M., Eisenberg, A., (2014) Angew. Chem., Int. Ed., 53, pp. 9000-9003; Matsen, M.W., Bates, F.S., (1996) Macromolecules, 29, pp. 7641-7644; Rodriguez-Hernandez, J., Checot, F., Gnanou, Y., Lecommandoux, S., (2005) Prog. Polym. Sci., 30, pp. 691-724; Lodge, T.P., Bang, J.A., Li, Z.B., Hillmyer, M.A., Talmon, Y., (2005) Faraday Discuss., 128, pp. 1-12; Li, Z., Ma, J., Lee, N.S., Wooley, K.L., (2011) J. Am. Chem. Soc., 133, pp. 1228-1231; Li, Z.B., Chen, Z.Y., Cui, H.G., Hales, K., Wooley, K.L., Pochan, D.J., (2007) Langmuir, 23, pp. 4689-4694; Ma, Q.G., Remsen, E.E., Clark, C.G., Kowalewski, T., Wooley, K.L., (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 5058-5063; Walther, A., Drechsler, M., Rosenfeldt, S., Harnau, L., Ballauff, M., Abetz, V., Muller, A.H.E., (2009) J. Am. Chem. Soc., 131, pp. 4720-4728; Liu, G.J., (2008) Adv. Polym. Sci., 220, pp. 29-64; Zhang, L., Eisenberg, A., (1995) Science, 268, pp. 1728-1731; Zhang, L.F., Yu, K., Eisenberg, A., (1996) Science, 272, pp. 1777-1779; Mai, Y., Eisenberg, A., (2012) Chem. Soc. Rev., 41, pp. 5969-5985; Zhu, J.H., Zhang, S.Y., Zhang, K., Wang, X.J., Mays, J.W., Wooley, K.L., Pochan, D.J., (2013) Nat. Commun., 4; Truong, N.P., Quinn, J.F., Dussert, M.V., Sousa, N.B.T., Whittaker, M.R., Davis, T.P., (2015) ACS Macro Lett., 4, pp. 381-386; Xu, J.T., Tao, L., Boyer, C., Lowe, A.B., Davis, T.P., (2011) Macromolecules, 44, pp. 299-312; Duong, H.T.T., Hughes, F., Sagnella, S., Kavallaris, M., Macmillan, A., Whan, R., Hook, J., Boyer, C., (2012) Mol. Pharm., 9, pp. 3046-3061; Liu, G.J., Qiao, L.J., Guo, A., (1996) Macromolecules, 29, pp. 5508-5510; Won, Y.Y., Davis, H.T., Bates, F.S., (1999) Science, 283, pp. 960-963; Templin, M., Franck, A., Duchesne, A., Leist, H., Zhang, Y.M., Ulrich, R., Schadler, V., Wiesner, U., (1997) Science, 278, pp. 1795-1798; Ishizu, K., Ikemoto, T., Ichimura, A., (1999) Polymer, 40, pp. 3147-3151; Liu, Y.F., Abetz, V., Muller, A.H.E., (2003) Macromolecules, 36, pp. 7894-7898; Patterson, J.P., Robin, M.P., Chassenieux, C., Colombani, O., O'Reilly, R.K., (2014) Chem. Soc. Rev., 43, pp. 2412-2425; He, W.N., Xu, J.T., (2012) Prog. Polym. Sci., 37, pp. 1350-1400; Schmelz, J., Schacher, F.H., Schmalz, H., (2013) Soft Matter, 9, pp. 2101-2107; Sun, L., Pitto-Barry, A., Kirby, N., Schiller, T.L., Sanchez, A.M., Dyson, M.A., Sloan, J., Dove, A.P., (2014) Nat. Commun., 5; Du, Z.X., Xu, J.T., Fan, Z.Q., (2007) Macromolecules, 40, pp. 7633-7637; Portinha, D., Boue, F., Bouteiller, L., Carrot, G., Chassenieux, C., Pensec, S., Reiter, G., (2007) Macromolecules, 40, pp. 4037-4042; Xu, J.T., Fairclough, J.P.A., Mai, S.M., Ryan, A.J., (2003) J. Mater. Chem., 13, pp. 2740-2748; Richter, D., Schneiders, D., Monkenbusch, M., Willner, L., Fetters, L.J., Huang, J.S., Lin, M., Farago, B., (1997) Macromolecules, 30, pp. 1053-1068; Schmalz, H., Schmelz, J., Drechsler, M., Yuan, J., Walther, A., Schweimer, K., Mihut, A.M., (2008) Macromolecules, 41, pp. 3235-3242; Gilroy, J.B., Gadt, T., Whittell, G.R., Chabanne, L., Mitchels, J.M., Richardson, R.M., Winnik, M.A., Manners, I., (2010) Nat. Chem., 2, pp. 566-570; Massey, J., Power, K.N., Manners, I., Winnik, M.A., (1998) J. Am. Chem. Soc., 120, pp. 9533-9540; Massey, J.A., Temple, K., Cao, L., Rharbi, Y., Raez, J., Winnik, M.A., Manners, I., (2000) J. Am. Chem. Soc., 122, pp. 11577-11584; Wang, X., Guerin, G., Wang, H., Wang, Y., Manners, I., Winnik, M.A., (2007) Science, 317, pp. 644-647; Sun, L., Petzetakis, N., Pitto-Barry, A., Schiller, T.L., Kirby, N., Keddie, D.J., Boyd, B.J., Dove, A.P., (2013) Macromolecules, 46, pp. 9074-9082; Warren, N.J., Armes, S.P., (2014) J. Am. Chem. Soc., 136, pp. 10174-10185; Charleux, B., Delaittre, G., Rieger, J., D'Agosto, F., (2012) Macromolecules, 45, pp. 6753-6765; Canning, S.L., Smith, G.N., Armes, S.P., (2016) Macromolecules, 49, pp. 1985-2001; Matyjaszewski, K., Tsarevsky, N.V., (2009) Nat. Chem., 1, pp. 276-288; Moad, G., Rizzardo, E., Thang, S.H., (2012) Aust. J. Chem., 65, pp. 985-1076; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, pp. 3661-3688; Waldron, C., Anastasaki, A., McHale, R., Wilson, P., Li, Z.D., Smith, T., Haddleton, D.M., (2014) Polym. Chem., 5, pp. 892-898; Kitayama, Y., Moribe, H., Kishida, K., Okubo, M., (2012) Polym. Chem., 3, pp. 1555-1559; Truong, N.P., Dussert, M.V., Whittaker, M.R., Quinn, J.F., Davis, T.P., (2015) Polym. Chem., 6, pp. 3865-3874; Rieger, J., (2015) Macromol. Rapid Commun., 36, pp. 1458-1471; Semsarilar, M., Perrier, S., (2010) Nat. Chem., 2, pp. 811-820; Tran, N.T.D., Jia, Z.F., Truong, N.P., Cooper, M.A., Monteiro, M.J., (2013) Biomacromolecules, 14, pp. 3463-3471; Zhang, X.W., Rieger, J., Charleux, B., (2012) Polym. Chem., 3, pp. 1502-1509; Zehm, D., Ratcliffe, L.P.D., Armes, S.P., (2013) Macromolecules, 46, pp. 128-139; Lovett, J.R., Warren, N.J., Ratcliffe, L.P.D., Kocik, M.K., Armes, S.P., (2015) Angew. Chem., Int. Ed., 54, pp. 1279-1283; Boisse, S., Rieger, J., Belal, K., Di-Cicco, A., Beaunier, P., Li, M.H., Charleux, B., (2010) Chem. Commun., 46, pp. 1950-1952; Boisse, S., Rieger, J., Pembouong, G., Beaunier, P., Charleux, B., (2011) J. Polym. Sci., Part A: Polym. Chem., 49, pp. 3346-3354; Blanazs, A., Ryan, A.J., Armes, S.P., (2012) Macromolecules, 45, pp. 5099-5107; Wan, W.M., Hong, C.Y., Pan, C.Y., (2009) Chem. Commun., pp. 5883-5885; Huang, C.Q., Pan, C.Y., (2010) Polymer, 51, pp. 5115-5121; Cai, W.M., Wan, W.M., Hong, C.Y., Huang, C.Q., Pan, C.Y., (2010) Soft Matter, 6, pp. 5554-5561; He, W.D., Sun, X.L., Wan, W.M., Pan, C.Y., (2011) Macromolecules, 44, pp. 3358-3365; Pei, Y.W., Lowe, A.B., (2014) Polym. Chem., 5, pp. 2342-2351; Jones, E.R., Semsarilar, M., Blanazs, A., Armes, S.P., (2012) Macromolecules, 45, pp. 5091-5098; Pei, Y., Thurairajah, L., Sugita, O.R., Lowe, A.B., (2015) Macromolecules, 48, pp. 236-244; Semsarilar, M., Jones, E.R., Blanazs, A., Armes, S.P., (2012) Adv. Mater., 24, pp. 3378-3382; Bauri, K., Narayanan, A., Haldar, U., De, P., (2015) Polym. Chem., 6, pp. 6152-6162; Semsarilar, M., Ladmiral, V., Blanazs, A., Armes, S.P., (2014) Polym. Chem., 5, pp. 3466-3475; Fielding, L.A., Derry, M.J., Ladmiral, V., Rosselgong, J., Rodrigues, A.M., Ratcliffe, L.P.D., Sugihara, S., Armes, S.P., (2013) Chem. Sci., 4, pp. 2081-2087; Pei, Y.W., Noy, J.M., Roth, P.J., Lowe, A.B., (2015) Polym. Chem., 6, pp. 1928-1931; Garrett, E.T., Pei, Y., Lowe, A.B., (2016) Polym. Chem., 7, pp. 297-301; Yeow, J., Xu, J.T., Boyer, C., (2015) ACS Macro Lett., 4, pp. 984-990; Zhang, X.W., Boisse, S., Zhang, W.J., Beaunier, P., D'Agosto, F., Rieger, J., Charleux, B., (2011) Macromolecules, 44, pp. 4149-4158; Chaduc, I., Crepet, A., Boyron, O., Charleux, B., D'Agosto, F., Lansalot, M., (2013) Macromolecules, 46, pp. 6013-6023; Zhang, W.J., D'Agosto, F., Boyron, O., Rieger, J., Charleux, B., (2012) Macromolecules, 45, pp. 4075-4084; Blanazs, A., Madsen, J., Battaglia, G., Ryan, A.J., Armes, S.P., (2011) J. Am. Chem. Soc., 133, pp. 16581-16587; Sugihara, S., Blanazs, A., Armes, S.P., Ryan, A.J., Lewis, A.L., (2011) J. Am. Chem. Soc., 133, pp. 15707-15713; Ladmiral, V., Semsarilar, M., Canton, I., Armes, S.P., (2013) J. Am. Chem. Soc., 135, pp. 13574-13581; Warren, N.J., Mykhaylyk, O.O., Mahmood, D., Ryan, A.J., Armes, S.P., (2014) J. Am. Chem. Soc., 136, pp. 1023-1033; Kocik, M.K., Mykhaylyk, O.O., Armes, S.P., (2014) Soft Matter, 10, pp. 3984-3992; Blanazs, A., Verber, R., Mykhaylyk, O.O., Ryan, A.J., Heath, J.Z., Douglas, C.W.I., Armes, S.P., (2012) J. Am. Chem. Soc., 134, pp. 9741-9748; Fielding, L.A., Lane, J.A., Derry, M.J., Mykhaylyk, O.O., Armes, S.P., (2014) J. Am. Chem. Soc., 136, pp. 5790-5798; Cunningham, V.J., Ratcliffe, L.P.D., Blanazs, A., Warren, N.J., Smith, A.J., Mykhaylyk, O.O., Armes, S.P., (2014) Polym. Chem., 5, pp. 6307-6317; Figg, C.A., Simula, A., Gebre, K.A., Tucker, B.S., Haddleton, D.M., Sumerlin, B.S., (2015) Chem. Sci., 6, pp. 1230-1236; Zhulina, E.B., Adam, M., Larue, I., Sheiko, S.S., Rubinstein, M., (2005) Macromolecules, 38, pp. 5330-5351; Larue, I., Adam, M., Pitsikalis, M., Hadjichristidis, N., Rubinstein, M., Sheiko, S.S., (2006) Macromolecules, 39, pp. 309-314; Bhargava, P., Tu, Y.F., Zheng, J.X., Xiong, H.M., Quirk, R.P., Cheng, S.Z.D., (2007) J. Am. Chem. Soc., 129, pp. 1113-1121; Raghavan, S.R., Douglas, J.F., (2012) Soft Matter, 8, pp. 8539-8546; Truong, N.P., Quinn, J.F., Anastasaki, A., Haddleton, D.M., Whittaker, M.R., Davis, T.P., (2016) Chem. Commun., 52, pp. 4497-4500; Jones, E.R., Semsarilar, M., Wyman, P., Boerakker, M., Armes, S.P., (2016) Polym. Chem., 7, pp. 851-859; Jia, Z.F., Bobrin, V.A., Truong, N.P., Gillard, M., Monteiro, M.J., (2014) J. Am. Chem. Soc., 136, pp. 5824-5827; Wang, H., Patil, A.J., Liu, K., Petrov, S., Mann, S., Winnik, M.A., Manners, I., (2009) Adv. Mater., 21, pp. 1805-1808; Zhang, M., Wang, M.F., He, S., Qian, J.S., Saffari, A., Lee, A., Kumar, S., Winnik, M.A., (2010) Macromolecules, 43, pp. 5066-5074; Bleach, R., Karagoz, B., Prakash, S.M., Davis, T.P., Boyer, C., (2014) ACS Macro Lett., 3, pp. 591-596; Yan, X.H., Liu, G.J., Li, Z., (2004) J. Am. Chem. Soc., 126, pp. 10059-10066; Gould, O.E.C., Qiu, H.B., Lunn, D.J., Rowden, J., Harniman, R.L., Hudson, Z.M., Winnik, M.A., Manners, I., (2015) Nat. Commun., 6, p. 10009; Kumar, S., Anselmo, A.C., Banerjee, A., Zakrewsky, M., Mitragotri, S., (2015) J. Controlled Release, 220, pp. 141-148; Mitchell, D.E., Lovett, J.R., Armes, S.P., Gibson, M.I., (2016) Angew. Chem., Int. Ed., 55, pp. 2801-2804; Oltra, N.S., Nair, P., Discher, D.E., (2014) Annu. Rev. Chem. Biomol., 5, pp. 281-299; Oltra, N.S., Swift, J., Mahmud, A., Rajagopal, K., Loverde, S.M., Discher, D.E., (2013) J. Mater. Chem. B, 1, pp. 5177-5185; Truong, N.P., Whittaker, M.R., Mak, C.W., Davis, T.P., (2015) Expert Opin. Drug Delivery, 12, pp. 129-142; Venkataraman, S., Hedrick, J.L., Ong, Z.Y., Yang, C., Ee, P.L.R., Hammond, P.T., Yang, Y.Y., (2011) Adv. Drug Delivery Rev., 63, pp. 1228-1246; Champion, J.A., Katare, Y.K., Mitragotri, S., (2007) J. Controlled Release, 121, pp. 3-9; Truong, N.P., Gu, W.Y., Prasadam, I., Jia, Z.F., Crawford, R., Xiao, Y., Monteiro, M.J., (2013) Nat. Commun., 4; Dalhaimer, P., Bermudez, H., Discher, D.E., (2004) J. Polym. Sci., Part B: Polym. Phys., 42, pp. 168-176; Karagoz, B., Esser, L., Duong, H.T., Basuki, J.S., Boyer, C., Davis, T.P., (2014) Polym. Chem., 5, pp. 350-355; Cai, S.S., Vijayan, K., Cheng, D., Lima, E.M., Discher, D.E., (2007) Pharm. Res., 24, pp. 2099-2109; Yu, H.J., Xu, Z.A., Wang, D.G., Chen, X.Z., Zhang, Z.W., Yin, Q., Li, Y.P., (2013) Polym. Chem., 4, pp. 5052-5055; Karagoz, B., Boyer, C., Davis, T.P., (2014) Macromol. Rapid Commun., 35, pp. 417-421; Elsabahy, M., Shrestha, R., Clark, C., Taylor, S., Leonard, J., Wooley, K.L., (2013) Nano Lett., 13, pp. 2172-2181; Barua, S., Mitragotri, S., (2013) ACS Nano, 7, pp. 9558-9570; Lee, S.E., Bairstow, S.F., Werling, J.O., Chaubal, M.V., Lin, L., Murphy, M.A., Diorio, J.P., Hoffman, R.M., (2014) Pharm. Dev. Technol., 19, pp. 438-453; Vllasaliu, D., Fowler, R., Stolnik, S., (2014) Expert Opin. Drug Delivery, 11, pp. 139-154; Macdonald, I.C., Schmidt, E.E., Groom, A.C., (1991) Microvasc. Res., 42, pp. 60-76; Dalhaimer, P., Bates, F.S., Discher, D.E., (2003) Macromolecules, 36, pp. 6873-6877; Champion, J.A., Mitragotri, S., (2009) Pharm. Res., 26, pp. 244-249; Sharma, G., Valenta, D.T., Altman, Y., Harvey, S., Xie, H., Mitragotri, S., Smith, J.W., (2010) J. Controlled Release, 147, pp. 408-412; Bruckman, M.A., Randolph, L.N., Vanmeter, A., Hern, S., Shoffstall, A.J., Taurog, R.E., Steinmetz, N.F., (2014) Virology, 449, pp. 163-173; Arnida, Janat-Amsbury, M.M., Ray, A., Peterson, C.M., Ghandehari, H., (2011) Eur. J. Pharm. Biopharm., 77, pp. 417-423; Zhou, Z.X., Ma, X.P., Jin, E.L., Tang, J.B., Sui, M.H., Shen, Y.Q., Van Kirk, E.A., Radosz, M., (2013) Biomaterials, 34, pp. 5722-5735; Wang, Y.J., Wang, D., Fu, Q., Liu, D., Ma, Y., Racette, K., He, Z.G., Liu, F., (2014) Mol. Pharm., 11, pp. 3766-3771; Christian, D.A., Cai, S., Garbuzenko, O.B., Harada, T., Allison, L., Minko, T., Discher, D.E., (2009) Mol. Pharm., 6, pp. 1343-1352; Chu, K.S., Hasan, W., Rawal, S., Walsh, M.D., Enlow, E.M., Luft, J.C., Bridges, A.S., Desimone, J.M., (2013) Nanomed. Nanotechnol., 9, pp. 686-693; Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., Chen, X., Dai, H., (2007) Nat. Nanotechnol., 2, pp. 47-52; Black, K.C.L., Wang, Y.C., Luehmann, H.P., Cai, X., Xing, W.X., Pang, B., Zhao, Y.F., Xia, Y.N., (2014) ACS Nano, 8, pp. 4385-4394; Kim, Y., Dalhaimer, P., Christian, D.A., Discher, D.E., (2005) Nanotechnology, 16, pp. S484-S491; Lee, K.L., Hubbard, L.C., Hern, S., Yildiz, I., Gratzl, M., Steinmetz, N.F., (2013) Biomater. Sci., 1, pp. 581-588; Chauhan, V.P., Popović, Z., Chen, O., Cui, J., Fukumura, D., Bawendi, M.G., Jain, R.K., (2011) Angew. Chem., Int. Ed., 123, pp. 11619-11622; Pluen, A., Netti, P.A., Jain, R.K., Berk, D.A., (1999) Biophys. J., 77, pp. 542-552; Howard, M., Zern, B.J., Anselmo, A.C., Shuvaev, V.V., Mitragotri, S., Muzykantov, V., (2014) ACS Nano, 8, pp. 4100-4132; Pillai, J.D., Dunn, S.S., Napier, M.E., Desimone, J.M., (2011) IUBMB Life, 63, pp. 596-606; Dalhaimer, P., Engler, A.J., Parthasarathy, R., Discher, D.E., (2004) Biomacromolecules, 5, pp. 1714-1719; Shuvaev, V.V., Ilies, M.A., Simone, E., Zaitsev, S., Kim, Y., Cai, S.S., Mahmud, A., Muzykantov, V.R., (2011) ACS Nano, 5, pp. 6991-6999; Kolhar, P., Anselmo, A.C., Gupta, V., Pant, K., Prabhakarpandian, B., Ruoslahti, E., Mitragotri, S., (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 10753-10758; Muro, S., Garnacho, C., Champion, J.A., Leferovich, J., Gajewski, C., Schuchman, E.H., Mitragotri, S., Muzykantov, V.R., (2008) Mol. Ther., 16, pp. 1450-1458",
year = "2016",
month = "7",
day = "14",
doi = "10.1039/c6py00639f",
language = "English",
volume = "7",
pages = "4295--4312",
journal = "Polymer Chemistry",
issn = "1759-9954",
publisher = "The Royal Society of Chemistry",
number = "26",

}

Polymeric filomicelles and nanoworms : Two decades of synthesis and application. / Truong Phuoc, Nghia; Quinn, J.F.; Whittaker, M.R.; Davis, T.P.

In: Polymer Chemistry, Vol. 7, No. 26, 14.07.2016, p. 4295-4312.

Research output: Contribution to journalReview ArticleResearchpeer-review

TY - JOUR

T1 - Polymeric filomicelles and nanoworms

T2 - Two decades of synthesis and application

AU - Truong Phuoc, Nghia

AU - Quinn, J.F.

AU - Whittaker, M.R.

AU - Davis, T.P.

N1 - Export Date: 25 July 2016 Correspondence Address: Truong, N.P.; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University ParkvilleAustralia; email: nghia.truong@monash.edu Funding Details: ARC, Australian Research Council References: Wen, X., Tang, L.M., Li, B.T., (2014) Chem.-Asian J., 9, pp. 2975-2983; Qiu, H.B., Hudson, Z.M., Winnik, M.A., Manners, I., (2015) Science, 347, pp. 1329-1332; Mandal, S., Eksteen-Akeroyd, Z.H., Jacobs, M.J., Hammink, R., Koepf, M., Lambeck, A.J.A., Van Hest, J.C.M., Rowan, A.E., (2013) Chem. Sci., 4, pp. 4168-4174; Canton, I., Warren, N.J., Chahal, A., Amps, K., Wood, A., Weightman, R., Wang, E., Armes, S.P., (2016) ACS Cent. Sci., 2, pp. 65-74; Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., Discher, D.E., (2007) Nat. Nanotechnol., 2, pp. 249-255; Truong, N.P., Whittaker, M.R., Anastasaki, A., Haddleton, D.M., Quinn, J.F., Davis, T.P., (2016) Polym. Chem., 7, pp. 430-440; Zhulina, E.B., Borisov, O.V., (2012) Macromolecules, 45, pp. 4429-4440; Termonia, Y., (2002) J. Polym. Sci., Part B: Polym. Phys., 40, pp. 890-895; Blanazs, A., Armes, S.P., Ryan, A.J., (2009) Macromol. Rapid Commun., 30, pp. 267-277; Israelachvili, J.N., (2011) Intermolecular and Surface Forces, pp. 1-674. , 3rd edn; Canelas, D.A., Herlihy, K.P., Desimone, J.M., (2009) WIREs Nanomed. Nanobiotechnol., 1, pp. 391-404; Xu, J., Wong, D.H.C., Byrne, J.D., Chen, K., Bowerman, C., Desimone, J.M., (2013) Angew. Chem., Int. Ed., 52, pp. 6580-6589; Rolland, J.P., Maynor, B.W., Euliss, L.E., Exner, A.E., Denison, G.M., Desimone, J.M., (2005) J. Am. Chem. Soc., 127, pp. 10096-10100; Hunziker, P., (2015) WIREs Nanomed. Nanobiotechnol., 7, pp. 169-188; Wang, Y.P., Merkel, T.J., Chen, K., Fromen, C.A., Betts, D.E., Desimone, J.M., (2011) Langmuir, 27, pp. 524-528; Kelly, J.Y., Desimone, J.M., (2008) J. Am. Chem. Soc., 130, pp. 5438-5439; Reuter, K.G., Perry, J.L., Kim, D., Luft, J.C., Liu, R., Desimone, J.M., (2015) Nano Lett., 15, pp. 6371-6378; Morton, S.W., Herlihy, K.P., Shopsowitz, K.E., Deng, Z.J., Chu, K.S., Bowerman, C.J., Desimone, J.M., Hammond, P.T., (2013) Adv. Mater., 25, pp. 4707-4713; Wang, J.Y., Wang, Y., Sheiko, S.S., Betts, D.E., Desimone, J.M., (2012) J. Am. Chem. Soc., 134, pp. 5801-5806; Qian, J.S., Zhang, M., Manners, I., Winnik, M.A., (2010) Trends Biotechnol., 28, pp. 84-92; Ho, C.C., Keller, A., Odell, J.A., Ottewill, R.H., (1993) Colloid Polym. Sci., 271, pp. 469-479; Ho, C.C., Keller, A., Odell, J.A., Ottewill, R.H., (1993) Polym. Int., 30, pp. 207-211; Champion, J.A., Katare, Y.K., Mitragotri, S., (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 11901-11904; Zhou, Z.M., Anselmo, A.C., Mitragotri, S., (2013) Adv. Mater., 25, pp. 2723-2727; Yoo, J.W., Mitragotri, S., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 11205-11210; Cameron, N.S., Corbierre, M.K., Eisenberg, A., (1999) Can. J. Chem., 77, pp. 1311-1326; Bates, F.S., Fredrickson, G.H., (1999) Phys. Today, 52, pp. 32-38; Zhang, S.G., (2003) Nat. Biotechnol., 21, pp. 1171-1178; Rizis, G., Van De Ven, T.G.M., Eisenberg, A., (2014) Angew. Chem., Int. Ed., 53, pp. 9000-9003; Matsen, M.W., Bates, F.S., (1996) Macromolecules, 29, pp. 7641-7644; Rodriguez-Hernandez, J., Checot, F., Gnanou, Y., Lecommandoux, S., (2005) Prog. Polym. Sci., 30, pp. 691-724; Lodge, T.P., Bang, J.A., Li, Z.B., Hillmyer, M.A., Talmon, Y., (2005) Faraday Discuss., 128, pp. 1-12; Li, Z., Ma, J., Lee, N.S., Wooley, K.L., (2011) J. Am. Chem. Soc., 133, pp. 1228-1231; Li, Z.B., Chen, Z.Y., Cui, H.G., Hales, K., Wooley, K.L., Pochan, D.J., (2007) Langmuir, 23, pp. 4689-4694; Ma, Q.G., Remsen, E.E., Clark, C.G., Kowalewski, T., Wooley, K.L., (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 5058-5063; Walther, A., Drechsler, M., Rosenfeldt, S., Harnau, L., Ballauff, M., Abetz, V., Muller, A.H.E., (2009) J. Am. Chem. Soc., 131, pp. 4720-4728; Liu, G.J., (2008) Adv. Polym. Sci., 220, pp. 29-64; Zhang, L., Eisenberg, A., (1995) Science, 268, pp. 1728-1731; Zhang, L.F., Yu, K., Eisenberg, A., (1996) Science, 272, pp. 1777-1779; Mai, Y., Eisenberg, A., (2012) Chem. Soc. Rev., 41, pp. 5969-5985; Zhu, J.H., Zhang, S.Y., Zhang, K., Wang, X.J., Mays, J.W., Wooley, K.L., Pochan, D.J., (2013) Nat. Commun., 4; Truong, N.P., Quinn, J.F., Dussert, M.V., Sousa, N.B.T., Whittaker, M.R., Davis, T.P., (2015) ACS Macro Lett., 4, pp. 381-386; Xu, J.T., Tao, L., Boyer, C., Lowe, A.B., Davis, T.P., (2011) Macromolecules, 44, pp. 299-312; Duong, H.T.T., Hughes, F., Sagnella, S., Kavallaris, M., Macmillan, A., Whan, R., Hook, J., Boyer, C., (2012) Mol. Pharm., 9, pp. 3046-3061; Liu, G.J., Qiao, L.J., Guo, A., (1996) Macromolecules, 29, pp. 5508-5510; Won, Y.Y., Davis, H.T., Bates, F.S., (1999) Science, 283, pp. 960-963; Templin, M., Franck, A., Duchesne, A., Leist, H., Zhang, Y.M., Ulrich, R., Schadler, V., Wiesner, U., (1997) Science, 278, pp. 1795-1798; Ishizu, K., Ikemoto, T., Ichimura, A., (1999) Polymer, 40, pp. 3147-3151; Liu, Y.F., Abetz, V., Muller, A.H.E., (2003) Macromolecules, 36, pp. 7894-7898; Patterson, J.P., Robin, M.P., Chassenieux, C., Colombani, O., O'Reilly, R.K., (2014) Chem. Soc. Rev., 43, pp. 2412-2425; He, W.N., Xu, J.T., (2012) Prog. Polym. Sci., 37, pp. 1350-1400; Schmelz, J., Schacher, F.H., Schmalz, H., (2013) Soft Matter, 9, pp. 2101-2107; Sun, L., Pitto-Barry, A., Kirby, N., Schiller, T.L., Sanchez, A.M., Dyson, M.A., Sloan, J., Dove, A.P., (2014) Nat. Commun., 5; Du, Z.X., Xu, J.T., Fan, Z.Q., (2007) Macromolecules, 40, pp. 7633-7637; Portinha, D., Boue, F., Bouteiller, L., Carrot, G., Chassenieux, C., Pensec, S., Reiter, G., (2007) Macromolecules, 40, pp. 4037-4042; Xu, J.T., Fairclough, J.P.A., Mai, S.M., Ryan, A.J., (2003) J. Mater. Chem., 13, pp. 2740-2748; Richter, D., Schneiders, D., Monkenbusch, M., Willner, L., Fetters, L.J., Huang, J.S., Lin, M., Farago, B., (1997) Macromolecules, 30, pp. 1053-1068; Schmalz, H., Schmelz, J., Drechsler, M., Yuan, J., Walther, A., Schweimer, K., Mihut, A.M., (2008) Macromolecules, 41, pp. 3235-3242; Gilroy, J.B., Gadt, T., Whittell, G.R., Chabanne, L., Mitchels, J.M., Richardson, R.M., Winnik, M.A., Manners, I., (2010) Nat. Chem., 2, pp. 566-570; Massey, J., Power, K.N., Manners, I., Winnik, M.A., (1998) J. Am. Chem. Soc., 120, pp. 9533-9540; Massey, J.A., Temple, K., Cao, L., Rharbi, Y., Raez, J., Winnik, M.A., Manners, I., (2000) J. Am. Chem. Soc., 122, pp. 11577-11584; Wang, X., Guerin, G., Wang, H., Wang, Y., Manners, I., Winnik, M.A., (2007) Science, 317, pp. 644-647; Sun, L., Petzetakis, N., Pitto-Barry, A., Schiller, T.L., Kirby, N., Keddie, D.J., Boyd, B.J., Dove, A.P., (2013) Macromolecules, 46, pp. 9074-9082; Warren, N.J., Armes, S.P., (2014) J. Am. Chem. Soc., 136, pp. 10174-10185; Charleux, B., Delaittre, G., Rieger, J., D'Agosto, F., (2012) Macromolecules, 45, pp. 6753-6765; Canning, S.L., Smith, G.N., Armes, S.P., (2016) Macromolecules, 49, pp. 1985-2001; Matyjaszewski, K., Tsarevsky, N.V., (2009) Nat. Chem., 1, pp. 276-288; Moad, G., Rizzardo, E., Thang, S.H., (2012) Aust. J. Chem., 65, pp. 985-1076; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, pp. 3661-3688; Waldron, C., Anastasaki, A., McHale, R., Wilson, P., Li, Z.D., Smith, T., Haddleton, D.M., (2014) Polym. Chem., 5, pp. 892-898; Kitayama, Y., Moribe, H., Kishida, K., Okubo, M., (2012) Polym. Chem., 3, pp. 1555-1559; Truong, N.P., Dussert, M.V., Whittaker, M.R., Quinn, J.F., Davis, T.P., (2015) Polym. Chem., 6, pp. 3865-3874; Rieger, J., (2015) Macromol. Rapid Commun., 36, pp. 1458-1471; Semsarilar, M., Perrier, S., (2010) Nat. Chem., 2, pp. 811-820; Tran, N.T.D., Jia, Z.F., Truong, N.P., Cooper, M.A., Monteiro, M.J., (2013) Biomacromolecules, 14, pp. 3463-3471; Zhang, X.W., Rieger, J., Charleux, B., (2012) Polym. Chem., 3, pp. 1502-1509; Zehm, D., Ratcliffe, L.P.D., Armes, S.P., (2013) Macromolecules, 46, pp. 128-139; Lovett, J.R., Warren, N.J., Ratcliffe, L.P.D., Kocik, M.K., Armes, S.P., (2015) Angew. Chem., Int. Ed., 54, pp. 1279-1283; Boisse, S., Rieger, J., Belal, K., Di-Cicco, A., Beaunier, P., Li, M.H., Charleux, B., (2010) Chem. Commun., 46, pp. 1950-1952; Boisse, S., Rieger, J., Pembouong, G., Beaunier, P., Charleux, B., (2011) J. Polym. Sci., Part A: Polym. Chem., 49, pp. 3346-3354; Blanazs, A., Ryan, A.J., Armes, S.P., (2012) Macromolecules, 45, pp. 5099-5107; Wan, W.M., Hong, C.Y., Pan, C.Y., (2009) Chem. Commun., pp. 5883-5885; Huang, C.Q., Pan, C.Y., (2010) Polymer, 51, pp. 5115-5121; Cai, W.M., Wan, W.M., Hong, C.Y., Huang, C.Q., Pan, C.Y., (2010) Soft Matter, 6, pp. 5554-5561; He, W.D., Sun, X.L., Wan, W.M., Pan, C.Y., (2011) Macromolecules, 44, pp. 3358-3365; Pei, Y.W., Lowe, A.B., (2014) Polym. Chem., 5, pp. 2342-2351; Jones, E.R., Semsarilar, M., Blanazs, A., Armes, S.P., (2012) Macromolecules, 45, pp. 5091-5098; Pei, Y., Thurairajah, L., Sugita, O.R., Lowe, A.B., (2015) Macromolecules, 48, pp. 236-244; Semsarilar, M., Jones, E.R., Blanazs, A., Armes, S.P., (2012) Adv. Mater., 24, pp. 3378-3382; Bauri, K., Narayanan, A., Haldar, U., De, P., (2015) Polym. Chem., 6, pp. 6152-6162; Semsarilar, M., Ladmiral, V., Blanazs, A., Armes, S.P., (2014) Polym. Chem., 5, pp. 3466-3475; Fielding, L.A., Derry, M.J., Ladmiral, V., Rosselgong, J., Rodrigues, A.M., Ratcliffe, L.P.D., Sugihara, S., Armes, S.P., (2013) Chem. Sci., 4, pp. 2081-2087; Pei, Y.W., Noy, J.M., Roth, P.J., Lowe, A.B., (2015) Polym. Chem., 6, pp. 1928-1931; Garrett, E.T., Pei, Y., Lowe, A.B., (2016) Polym. Chem., 7, pp. 297-301; Yeow, J., Xu, J.T., Boyer, C., (2015) ACS Macro Lett., 4, pp. 984-990; Zhang, X.W., Boisse, S., Zhang, W.J., Beaunier, P., D'Agosto, F., Rieger, J., Charleux, B., (2011) Macromolecules, 44, pp. 4149-4158; Chaduc, I., Crepet, A., Boyron, O., Charleux, B., D'Agosto, F., Lansalot, M., (2013) Macromolecules, 46, pp. 6013-6023; Zhang, W.J., D'Agosto, F., Boyron, O., Rieger, J., Charleux, B., (2012) Macromolecules, 45, pp. 4075-4084; Blanazs, A., Madsen, J., Battaglia, G., Ryan, A.J., Armes, S.P., (2011) J. Am. Chem. Soc., 133, pp. 16581-16587; Sugihara, S., Blanazs, A., Armes, S.P., Ryan, A.J., Lewis, A.L., (2011) J. Am. Chem. Soc., 133, pp. 15707-15713; Ladmiral, V., Semsarilar, M., Canton, I., Armes, S.P., (2013) J. Am. Chem. Soc., 135, pp. 13574-13581; Warren, N.J., Mykhaylyk, O.O., Mahmood, D., Ryan, A.J., Armes, S.P., (2014) J. Am. Chem. Soc., 136, pp. 1023-1033; Kocik, M.K., Mykhaylyk, O.O., Armes, S.P., (2014) Soft Matter, 10, pp. 3984-3992; Blanazs, A., Verber, R., Mykhaylyk, O.O., Ryan, A.J., Heath, J.Z., Douglas, C.W.I., Armes, S.P., (2012) J. Am. Chem. Soc., 134, pp. 9741-9748; Fielding, L.A., Lane, J.A., Derry, M.J., Mykhaylyk, O.O., Armes, S.P., (2014) J. Am. Chem. Soc., 136, pp. 5790-5798; Cunningham, V.J., Ratcliffe, L.P.D., Blanazs, A., Warren, N.J., Smith, A.J., Mykhaylyk, O.O., Armes, S.P., (2014) Polym. Chem., 5, pp. 6307-6317; Figg, C.A., Simula, A., Gebre, K.A., Tucker, B.S., Haddleton, D.M., Sumerlin, B.S., (2015) Chem. Sci., 6, pp. 1230-1236; Zhulina, E.B., Adam, M., Larue, I., Sheiko, S.S., Rubinstein, M., (2005) Macromolecules, 38, pp. 5330-5351; Larue, I., Adam, M., Pitsikalis, M., Hadjichristidis, N., Rubinstein, M., Sheiko, S.S., (2006) Macromolecules, 39, pp. 309-314; Bhargava, P., Tu, Y.F., Zheng, J.X., Xiong, H.M., Quirk, R.P., Cheng, S.Z.D., (2007) J. Am. Chem. Soc., 129, pp. 1113-1121; Raghavan, S.R., Douglas, J.F., (2012) Soft Matter, 8, pp. 8539-8546; Truong, N.P., Quinn, J.F., Anastasaki, A., Haddleton, D.M., Whittaker, M.R., Davis, T.P., (2016) Chem. Commun., 52, pp. 4497-4500; Jones, E.R., Semsarilar, M., Wyman, P., Boerakker, M., Armes, S.P., (2016) Polym. Chem., 7, pp. 851-859; Jia, Z.F., Bobrin, V.A., Truong, N.P., Gillard, M., Monteiro, M.J., (2014) J. Am. Chem. Soc., 136, pp. 5824-5827; Wang, H., Patil, A.J., Liu, K., Petrov, S., Mann, S., Winnik, M.A., Manners, I., (2009) Adv. Mater., 21, pp. 1805-1808; Zhang, M., Wang, M.F., He, S., Qian, J.S., Saffari, A., Lee, A., Kumar, S., Winnik, M.A., (2010) Macromolecules, 43, pp. 5066-5074; Bleach, R., Karagoz, B., Prakash, S.M., Davis, T.P., Boyer, C., (2014) ACS Macro Lett., 3, pp. 591-596; Yan, X.H., Liu, G.J., Li, Z., (2004) J. Am. Chem. Soc., 126, pp. 10059-10066; Gould, O.E.C., Qiu, H.B., Lunn, D.J., Rowden, J., Harniman, R.L., Hudson, Z.M., Winnik, M.A., Manners, I., (2015) Nat. Commun., 6, p. 10009; Kumar, S., Anselmo, A.C., Banerjee, A., Zakrewsky, M., Mitragotri, S., (2015) J. Controlled Release, 220, pp. 141-148; Mitchell, D.E., Lovett, J.R., Armes, S.P., Gibson, M.I., (2016) Angew. Chem., Int. Ed., 55, pp. 2801-2804; Oltra, N.S., Nair, P., Discher, D.E., (2014) Annu. Rev. Chem. Biomol., 5, pp. 281-299; Oltra, N.S., Swift, J., Mahmud, A., Rajagopal, K., Loverde, S.M., Discher, D.E., (2013) J. Mater. Chem. B, 1, pp. 5177-5185; Truong, N.P., Whittaker, M.R., Mak, C.W., Davis, T.P., (2015) Expert Opin. Drug Delivery, 12, pp. 129-142; Venkataraman, S., Hedrick, J.L., Ong, Z.Y., Yang, C., Ee, P.L.R., Hammond, P.T., Yang, Y.Y., (2011) Adv. Drug Delivery Rev., 63, pp. 1228-1246; Champion, J.A., Katare, Y.K., Mitragotri, S., (2007) J. Controlled Release, 121, pp. 3-9; Truong, N.P., Gu, W.Y., Prasadam, I., Jia, Z.F., Crawford, R., Xiao, Y., Monteiro, M.J., (2013) Nat. Commun., 4; Dalhaimer, P., Bermudez, H., Discher, D.E., (2004) J. Polym. Sci., Part B: Polym. Phys., 42, pp. 168-176; Karagoz, B., Esser, L., Duong, H.T., Basuki, J.S., Boyer, C., Davis, T.P., (2014) Polym. Chem., 5, pp. 350-355; Cai, S.S., Vijayan, K., Cheng, D., Lima, E.M., Discher, D.E., (2007) Pharm. Res., 24, pp. 2099-2109; Yu, H.J., Xu, Z.A., Wang, D.G., Chen, X.Z., Zhang, Z.W., Yin, Q., Li, Y.P., (2013) Polym. Chem., 4, pp. 5052-5055; Karagoz, B., Boyer, C., Davis, T.P., (2014) Macromol. Rapid Commun., 35, pp. 417-421; Elsabahy, M., Shrestha, R., Clark, C., Taylor, S., Leonard, J., Wooley, K.L., (2013) Nano Lett., 13, pp. 2172-2181; Barua, S., Mitragotri, S., (2013) ACS Nano, 7, pp. 9558-9570; Lee, S.E., Bairstow, S.F., Werling, J.O., Chaubal, M.V., Lin, L., Murphy, M.A., Diorio, J.P., Hoffman, R.M., (2014) Pharm. Dev. Technol., 19, pp. 438-453; Vllasaliu, D., Fowler, R., Stolnik, S., (2014) Expert Opin. Drug Delivery, 11, pp. 139-154; Macdonald, I.C., Schmidt, E.E., Groom, A.C., (1991) Microvasc. Res., 42, pp. 60-76; Dalhaimer, P., Bates, F.S., Discher, D.E., (2003) Macromolecules, 36, pp. 6873-6877; Champion, J.A., Mitragotri, S., (2009) Pharm. Res., 26, pp. 244-249; Sharma, G., Valenta, D.T., Altman, Y., Harvey, S., Xie, H., Mitragotri, S., Smith, J.W., (2010) J. Controlled Release, 147, pp. 408-412; Bruckman, M.A., Randolph, L.N., Vanmeter, A., Hern, S., Shoffstall, A.J., Taurog, R.E., Steinmetz, N.F., (2014) Virology, 449, pp. 163-173; Arnida, Janat-Amsbury, M.M., Ray, A., Peterson, C.M., Ghandehari, H., (2011) Eur. J. Pharm. Biopharm., 77, pp. 417-423; Zhou, Z.X., Ma, X.P., Jin, E.L., Tang, J.B., Sui, M.H., Shen, Y.Q., Van Kirk, E.A., Radosz, M., (2013) Biomaterials, 34, pp. 5722-5735; Wang, Y.J., Wang, D., Fu, Q., Liu, D., Ma, Y., Racette, K., He, Z.G., Liu, F., (2014) Mol. Pharm., 11, pp. 3766-3771; Christian, D.A., Cai, S., Garbuzenko, O.B., Harada, T., Allison, L., Minko, T., Discher, D.E., (2009) Mol. Pharm., 6, pp. 1343-1352; Chu, K.S., Hasan, W., Rawal, S., Walsh, M.D., Enlow, E.M., Luft, J.C., Bridges, A.S., Desimone, J.M., (2013) Nanomed. Nanotechnol., 9, pp. 686-693; Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., Chen, X., Dai, H., (2007) Nat. Nanotechnol., 2, pp. 47-52; Black, K.C.L., Wang, Y.C., Luehmann, H.P., Cai, X., Xing, W.X., Pang, B., Zhao, Y.F., Xia, Y.N., (2014) ACS Nano, 8, pp. 4385-4394; Kim, Y., Dalhaimer, P., Christian, D.A., Discher, D.E., (2005) Nanotechnology, 16, pp. S484-S491; Lee, K.L., Hubbard, L.C., Hern, S., Yildiz, I., Gratzl, M., Steinmetz, N.F., (2013) Biomater. Sci., 1, pp. 581-588; Chauhan, V.P., Popović, Z., Chen, O., Cui, J., Fukumura, D., Bawendi, M.G., Jain, R.K., (2011) Angew. Chem., Int. Ed., 123, pp. 11619-11622; Pluen, A., Netti, P.A., Jain, R.K., Berk, D.A., (1999) Biophys. J., 77, pp. 542-552; Howard, M., Zern, B.J., Anselmo, A.C., Shuvaev, V.V., Mitragotri, S., Muzykantov, V., (2014) ACS Nano, 8, pp. 4100-4132; Pillai, J.D., Dunn, S.S., Napier, M.E., Desimone, J.M., (2011) IUBMB Life, 63, pp. 596-606; Dalhaimer, P., Engler, A.J., Parthasarathy, R., Discher, D.E., (2004) Biomacromolecules, 5, pp. 1714-1719; Shuvaev, V.V., Ilies, M.A., Simone, E., Zaitsev, S., Kim, Y., Cai, S.S., Mahmud, A., Muzykantov, V.R., (2011) ACS Nano, 5, pp. 6991-6999; Kolhar, P., Anselmo, A.C., Gupta, V., Pant, K., Prabhakarpandian, B., Ruoslahti, E., Mitragotri, S., (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 10753-10758; Muro, S., Garnacho, C., Champion, J.A., Leferovich, J., Gajewski, C., Schuchman, E.H., Mitragotri, S., Muzykantov, V.R., (2008) Mol. Ther., 16, pp. 1450-1458

PY - 2016/7/14

Y1 - 2016/7/14

N2 - Filomicelles and nanoworms are an emerging subclass of nanomaterials with a special elongated shape. The physical properties of a filomicelle are distinct from a traditional spherical micelle, and as such have attracted tremendous interest in a variety of research areas. In this review, we highlight the substantial progress in the synthesis and application of polymeric nanoworms over the past two decades. Synthetic techniques summarized in this review are particle replication in nonwetting templates (PRINT), film stretching, self-assembly (SA), crystallization-driven self-assembly (CDSA), polymerization-induced self-assembly (PISA), and temperature-induced morphological transformation (TIMT). The applications of filomicelles as (i) templates for inorganic nanoparticles, (ii) building blocks for superstructures, (iii) synthetic dendritic cells for immunotherapy, (iv) constituents of thermoresponsive gels for biomedical applications, and (v) nanocarriers for cancer drug delivery are subsequently discussed. In the conclusion, we describe the current trajectory of research in the field and identify areas where further developments are of urgent need.

AB - Filomicelles and nanoworms are an emerging subclass of nanomaterials with a special elongated shape. The physical properties of a filomicelle are distinct from a traditional spherical micelle, and as such have attracted tremendous interest in a variety of research areas. In this review, we highlight the substantial progress in the synthesis and application of polymeric nanoworms over the past two decades. Synthetic techniques summarized in this review are particle replication in nonwetting templates (PRINT), film stretching, self-assembly (SA), crystallization-driven self-assembly (CDSA), polymerization-induced self-assembly (PISA), and temperature-induced morphological transformation (TIMT). The applications of filomicelles as (i) templates for inorganic nanoparticles, (ii) building blocks for superstructures, (iii) synthetic dendritic cells for immunotherapy, (iv) constituents of thermoresponsive gels for biomedical applications, and (v) nanocarriers for cancer drug delivery are subsequently discussed. In the conclusion, we describe the current trajectory of research in the field and identify areas where further developments are of urgent need.

KW - Medical applications

KW - Nanoparticles

KW - Biomedical applications

KW - Cancer drug deliveries

KW - Inorganic nanoparticle

KW - Morphological transformations

KW - Nonwetting templates

KW - Synthetic techniques

KW - Temperature-induced

KW - Thermoresponsive gel

KW - Self assembly

UR - http://www.scopus.com/inward/record.url?scp=84976591000&partnerID=8YFLogxK

U2 - 10.1039/c6py00639f

DO - 10.1039/c6py00639f

M3 - Review Article

VL - 7

SP - 4295

EP - 4312

JO - Polymer Chemistry

JF - Polymer Chemistry

SN - 1759-9954

IS - 26

ER -