Abstract
Filomicelles and nanoworms are an emerging subclass of nanomaterials with a special elongated shape. The physical properties of a filomicelle are distinct from a traditional spherical micelle, and as such have attracted tremendous interest in a variety of research areas. In this review, we highlight the substantial progress in the synthesis and application of polymeric nanoworms over the past two decades. Synthetic techniques summarized in this review are particle replication in nonwetting templates (PRINT), film stretching, self-assembly (SA), crystallization-driven self-assembly (CDSA), polymerization-induced self-assembly (PISA), and temperature-induced morphological transformation (TIMT). The applications of filomicelles as (i) templates for inorganic nanoparticles, (ii) building blocks for superstructures, (iii) synthetic dendritic cells for immunotherapy, (iv) constituents of thermoresponsive gels for biomedical applications, and (v) nanocarriers for cancer drug delivery are subsequently discussed. In the conclusion, we describe the current trajectory of research in the field and identify areas where further developments are of urgent need.
Original language | English |
---|---|
Pages (from-to) | 4295-4312 |
Number of pages | 18 |
Journal | Polymer Chemistry |
Volume | 7 |
Issue number | 26 |
DOIs | |
Publication status | Published - 14 Jul 2016 |
Keywords
- Medical applications
- Nanoparticles
- Biomedical applications
- Cancer drug deliveries
- Inorganic nanoparticle
- Morphological transformations
- Nonwetting templates
- Synthetic techniques
- Temperature-induced
- Thermoresponsive gel
- Self assembly
Cite this
}
Polymeric filomicelles and nanoworms : Two decades of synthesis and application. / Truong Phuoc, Nghia; Quinn, J.F.; Whittaker, M.R.; Davis, T.P.
In: Polymer Chemistry, Vol. 7, No. 26, 14.07.2016, p. 4295-4312.Research output: Contribution to journal › Review Article › Research › peer-review
TY - JOUR
T1 - Polymeric filomicelles and nanoworms
T2 - Two decades of synthesis and application
AU - Truong Phuoc, Nghia
AU - Quinn, J.F.
AU - Whittaker, M.R.
AU - Davis, T.P.
N1 - Export Date: 25 July 2016 Correspondence Address: Truong, N.P.; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University ParkvilleAustralia; email: nghia.truong@monash.edu Funding Details: ARC, Australian Research Council References: Wen, X., Tang, L.M., Li, B.T., (2014) Chem.-Asian J., 9, pp. 2975-2983; Qiu, H.B., Hudson, Z.M., Winnik, M.A., Manners, I., (2015) Science, 347, pp. 1329-1332; Mandal, S., Eksteen-Akeroyd, Z.H., Jacobs, M.J., Hammink, R., Koepf, M., Lambeck, A.J.A., Van Hest, J.C.M., Rowan, A.E., (2013) Chem. Sci., 4, pp. 4168-4174; Canton, I., Warren, N.J., Chahal, A., Amps, K., Wood, A., Weightman, R., Wang, E., Armes, S.P., (2016) ACS Cent. Sci., 2, pp. 65-74; Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., Discher, D.E., (2007) Nat. Nanotechnol., 2, pp. 249-255; Truong, N.P., Whittaker, M.R., Anastasaki, A., Haddleton, D.M., Quinn, J.F., Davis, T.P., (2016) Polym. Chem., 7, pp. 430-440; Zhulina, E.B., Borisov, O.V., (2012) Macromolecules, 45, pp. 4429-4440; Termonia, Y., (2002) J. Polym. Sci., Part B: Polym. Phys., 40, pp. 890-895; Blanazs, A., Armes, S.P., Ryan, A.J., (2009) Macromol. Rapid Commun., 30, pp. 267-277; Israelachvili, J.N., (2011) Intermolecular and Surface Forces, pp. 1-674. , 3rd edn; Canelas, D.A., Herlihy, K.P., Desimone, J.M., (2009) WIREs Nanomed. Nanobiotechnol., 1, pp. 391-404; Xu, J., Wong, D.H.C., Byrne, J.D., Chen, K., Bowerman, C., Desimone, J.M., (2013) Angew. Chem., Int. Ed., 52, pp. 6580-6589; Rolland, J.P., Maynor, B.W., Euliss, L.E., Exner, A.E., Denison, G.M., Desimone, J.M., (2005) J. Am. Chem. Soc., 127, pp. 10096-10100; Hunziker, P., (2015) WIREs Nanomed. Nanobiotechnol., 7, pp. 169-188; Wang, Y.P., Merkel, T.J., Chen, K., Fromen, C.A., Betts, D.E., Desimone, J.M., (2011) Langmuir, 27, pp. 524-528; Kelly, J.Y., Desimone, J.M., (2008) J. Am. Chem. Soc., 130, pp. 5438-5439; Reuter, K.G., Perry, J.L., Kim, D., Luft, J.C., Liu, R., Desimone, J.M., (2015) Nano Lett., 15, pp. 6371-6378; Morton, S.W., Herlihy, K.P., Shopsowitz, K.E., Deng, Z.J., Chu, K.S., Bowerman, C.J., Desimone, J.M., Hammond, P.T., (2013) Adv. Mater., 25, pp. 4707-4713; Wang, J.Y., Wang, Y., Sheiko, S.S., Betts, D.E., Desimone, J.M., (2012) J. Am. Chem. Soc., 134, pp. 5801-5806; Qian, J.S., Zhang, M., Manners, I., Winnik, M.A., (2010) Trends Biotechnol., 28, pp. 84-92; Ho, C.C., Keller, A., Odell, J.A., Ottewill, R.H., (1993) Colloid Polym. Sci., 271, pp. 469-479; Ho, C.C., Keller, A., Odell, J.A., Ottewill, R.H., (1993) Polym. Int., 30, pp. 207-211; Champion, J.A., Katare, Y.K., Mitragotri, S., (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 11901-11904; Zhou, Z.M., Anselmo, A.C., Mitragotri, S., (2013) Adv. Mater., 25, pp. 2723-2727; Yoo, J.W., Mitragotri, S., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 11205-11210; Cameron, N.S., Corbierre, M.K., Eisenberg, A., (1999) Can. J. Chem., 77, pp. 1311-1326; Bates, F.S., Fredrickson, G.H., (1999) Phys. Today, 52, pp. 32-38; Zhang, S.G., (2003) Nat. Biotechnol., 21, pp. 1171-1178; Rizis, G., Van De Ven, T.G.M., Eisenberg, A., (2014) Angew. Chem., Int. Ed., 53, pp. 9000-9003; Matsen, M.W., Bates, F.S., (1996) Macromolecules, 29, pp. 7641-7644; Rodriguez-Hernandez, J., Checot, F., Gnanou, Y., Lecommandoux, S., (2005) Prog. Polym. Sci., 30, pp. 691-724; Lodge, T.P., Bang, J.A., Li, Z.B., Hillmyer, M.A., Talmon, Y., (2005) Faraday Discuss., 128, pp. 1-12; Li, Z., Ma, J., Lee, N.S., Wooley, K.L., (2011) J. Am. Chem. Soc., 133, pp. 1228-1231; Li, Z.B., Chen, Z.Y., Cui, H.G., Hales, K., Wooley, K.L., Pochan, D.J., (2007) Langmuir, 23, pp. 4689-4694; Ma, Q.G., Remsen, E.E., Clark, C.G., Kowalewski, T., Wooley, K.L., (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 5058-5063; Walther, A., Drechsler, M., Rosenfeldt, S., Harnau, L., Ballauff, M., Abetz, V., Muller, A.H.E., (2009) J. Am. Chem. Soc., 131, pp. 4720-4728; Liu, G.J., (2008) Adv. Polym. Sci., 220, pp. 29-64; Zhang, L., Eisenberg, A., (1995) Science, 268, pp. 1728-1731; Zhang, L.F., Yu, K., Eisenberg, A., (1996) Science, 272, pp. 1777-1779; Mai, Y., Eisenberg, A., (2012) Chem. Soc. Rev., 41, pp. 5969-5985; Zhu, J.H., Zhang, S.Y., Zhang, K., Wang, X.J., Mays, J.W., Wooley, K.L., Pochan, D.J., (2013) Nat. Commun., 4; Truong, N.P., Quinn, J.F., Dussert, M.V., Sousa, N.B.T., Whittaker, M.R., Davis, T.P., (2015) ACS Macro Lett., 4, pp. 381-386; Xu, J.T., Tao, L., Boyer, C., Lowe, A.B., Davis, T.P., (2011) Macromolecules, 44, pp. 299-312; Duong, H.T.T., Hughes, F., Sagnella, S., Kavallaris, M., Macmillan, A., Whan, R., Hook, J., Boyer, C., (2012) Mol. Pharm., 9, pp. 3046-3061; Liu, G.J., Qiao, L.J., Guo, A., (1996) Macromolecules, 29, pp. 5508-5510; Won, Y.Y., Davis, H.T., Bates, F.S., (1999) Science, 283, pp. 960-963; Templin, M., Franck, A., Duchesne, A., Leist, H., Zhang, Y.M., Ulrich, R., Schadler, V., Wiesner, U., (1997) Science, 278, pp. 1795-1798; Ishizu, K., Ikemoto, T., Ichimura, A., (1999) Polymer, 40, pp. 3147-3151; Liu, Y.F., Abetz, V., Muller, A.H.E., (2003) Macromolecules, 36, pp. 7894-7898; Patterson, J.P., Robin, M.P., Chassenieux, C., Colombani, O., O'Reilly, R.K., (2014) Chem. Soc. Rev., 43, pp. 2412-2425; He, W.N., Xu, J.T., (2012) Prog. Polym. Sci., 37, pp. 1350-1400; Schmelz, J., Schacher, F.H., Schmalz, H., (2013) Soft Matter, 9, pp. 2101-2107; Sun, L., Pitto-Barry, A., Kirby, N., Schiller, T.L., Sanchez, A.M., Dyson, M.A., Sloan, J., Dove, A.P., (2014) Nat. Commun., 5; Du, Z.X., Xu, J.T., Fan, Z.Q., (2007) Macromolecules, 40, pp. 7633-7637; Portinha, D., Boue, F., Bouteiller, L., Carrot, G., Chassenieux, C., Pensec, S., Reiter, G., (2007) Macromolecules, 40, pp. 4037-4042; Xu, J.T., Fairclough, J.P.A., Mai, S.M., Ryan, A.J., (2003) J. Mater. Chem., 13, pp. 2740-2748; Richter, D., Schneiders, D., Monkenbusch, M., Willner, L., Fetters, L.J., Huang, J.S., Lin, M., Farago, B., (1997) Macromolecules, 30, pp. 1053-1068; Schmalz, H., Schmelz, J., Drechsler, M., Yuan, J., Walther, A., Schweimer, K., Mihut, A.M., (2008) Macromolecules, 41, pp. 3235-3242; Gilroy, J.B., Gadt, T., Whittell, G.R., Chabanne, L., Mitchels, J.M., Richardson, R.M., Winnik, M.A., Manners, I., (2010) Nat. Chem., 2, pp. 566-570; Massey, J., Power, K.N., Manners, I., Winnik, M.A., (1998) J. Am. Chem. Soc., 120, pp. 9533-9540; Massey, J.A., Temple, K., Cao, L., Rharbi, Y., Raez, J., Winnik, M.A., Manners, I., (2000) J. Am. Chem. Soc., 122, pp. 11577-11584; Wang, X., Guerin, G., Wang, H., Wang, Y., Manners, I., Winnik, M.A., (2007) Science, 317, pp. 644-647; Sun, L., Petzetakis, N., Pitto-Barry, A., Schiller, T.L., Kirby, N., Keddie, D.J., Boyd, B.J., Dove, A.P., (2013) Macromolecules, 46, pp. 9074-9082; Warren, N.J., Armes, S.P., (2014) J. Am. Chem. Soc., 136, pp. 10174-10185; Charleux, B., Delaittre, G., Rieger, J., D'Agosto, F., (2012) Macromolecules, 45, pp. 6753-6765; Canning, S.L., Smith, G.N., Armes, S.P., (2016) Macromolecules, 49, pp. 1985-2001; Matyjaszewski, K., Tsarevsky, N.V., (2009) Nat. Chem., 1, pp. 276-288; Moad, G., Rizzardo, E., Thang, S.H., (2012) Aust. J. Chem., 65, pp. 985-1076; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, pp. 3661-3688; Waldron, C., Anastasaki, A., McHale, R., Wilson, P., Li, Z.D., Smith, T., Haddleton, D.M., (2014) Polym. Chem., 5, pp. 892-898; Kitayama, Y., Moribe, H., Kishida, K., Okubo, M., (2012) Polym. Chem., 3, pp. 1555-1559; Truong, N.P., Dussert, M.V., Whittaker, M.R., Quinn, J.F., Davis, T.P., (2015) Polym. Chem., 6, pp. 3865-3874; Rieger, J., (2015) Macromol. Rapid Commun., 36, pp. 1458-1471; Semsarilar, M., Perrier, S., (2010) Nat. Chem., 2, pp. 811-820; Tran, N.T.D., Jia, Z.F., Truong, N.P., Cooper, M.A., Monteiro, M.J., (2013) Biomacromolecules, 14, pp. 3463-3471; Zhang, X.W., Rieger, J., Charleux, B., (2012) Polym. Chem., 3, pp. 1502-1509; Zehm, D., Ratcliffe, L.P.D., Armes, S.P., (2013) Macromolecules, 46, pp. 128-139; Lovett, J.R., Warren, N.J., Ratcliffe, L.P.D., Kocik, M.K., Armes, S.P., (2015) Angew. Chem., Int. Ed., 54, pp. 1279-1283; Boisse, S., Rieger, J., Belal, K., Di-Cicco, A., Beaunier, P., Li, M.H., Charleux, B., (2010) Chem. Commun., 46, pp. 1950-1952; Boisse, S., Rieger, J., Pembouong, G., Beaunier, P., Charleux, B., (2011) J. Polym. Sci., Part A: Polym. Chem., 49, pp. 3346-3354; Blanazs, A., Ryan, A.J., Armes, S.P., (2012) Macromolecules, 45, pp. 5099-5107; Wan, W.M., Hong, C.Y., Pan, C.Y., (2009) Chem. Commun., pp. 5883-5885; Huang, C.Q., Pan, C.Y., (2010) Polymer, 51, pp. 5115-5121; Cai, W.M., Wan, W.M., Hong, C.Y., Huang, C.Q., Pan, C.Y., (2010) Soft Matter, 6, pp. 5554-5561; He, W.D., Sun, X.L., Wan, W.M., Pan, C.Y., (2011) Macromolecules, 44, pp. 3358-3365; Pei, Y.W., Lowe, A.B., (2014) Polym. Chem., 5, pp. 2342-2351; Jones, E.R., Semsarilar, M., Blanazs, A., Armes, S.P., (2012) Macromolecules, 45, pp. 5091-5098; Pei, Y., Thurairajah, L., Sugita, O.R., Lowe, A.B., (2015) Macromolecules, 48, pp. 236-244; Semsarilar, M., Jones, E.R., Blanazs, A., Armes, S.P., (2012) Adv. Mater., 24, pp. 3378-3382; Bauri, K., Narayanan, A., Haldar, U., De, P., (2015) Polym. Chem., 6, pp. 6152-6162; Semsarilar, M., Ladmiral, V., Blanazs, A., Armes, S.P., (2014) Polym. Chem., 5, pp. 3466-3475; Fielding, L.A., Derry, M.J., Ladmiral, V., Rosselgong, J., Rodrigues, A.M., Ratcliffe, L.P.D., Sugihara, S., Armes, S.P., (2013) Chem. Sci., 4, pp. 2081-2087; Pei, Y.W., Noy, J.M., Roth, P.J., Lowe, A.B., (2015) Polym. Chem., 6, pp. 1928-1931; Garrett, E.T., Pei, Y., Lowe, A.B., (2016) Polym. Chem., 7, pp. 297-301; Yeow, J., Xu, J.T., Boyer, C., (2015) ACS Macro Lett., 4, pp. 984-990; Zhang, X.W., Boisse, S., Zhang, W.J., Beaunier, P., D'Agosto, F., Rieger, J., Charleux, B., (2011) Macromolecules, 44, pp. 4149-4158; Chaduc, I., Crepet, A., Boyron, O., Charleux, B., D'Agosto, F., Lansalot, M., (2013) Macromolecules, 46, pp. 6013-6023; Zhang, W.J., D'Agosto, F., Boyron, O., Rieger, J., Charleux, B., (2012) Macromolecules, 45, pp. 4075-4084; Blanazs, A., Madsen, J., Battaglia, G., Ryan, A.J., Armes, S.P., (2011) J. Am. Chem. Soc., 133, pp. 16581-16587; Sugihara, S., Blanazs, A., Armes, S.P., Ryan, A.J., Lewis, A.L., (2011) J. Am. Chem. Soc., 133, pp. 15707-15713; Ladmiral, V., Semsarilar, M., Canton, I., Armes, S.P., (2013) J. Am. Chem. Soc., 135, pp. 13574-13581; Warren, N.J., Mykhaylyk, O.O., Mahmood, D., Ryan, A.J., Armes, S.P., (2014) J. Am. Chem. Soc., 136, pp. 1023-1033; Kocik, M.K., Mykhaylyk, O.O., Armes, S.P., (2014) Soft Matter, 10, pp. 3984-3992; Blanazs, A., Verber, R., Mykhaylyk, O.O., Ryan, A.J., Heath, J.Z., Douglas, C.W.I., Armes, S.P., (2012) J. Am. Chem. Soc., 134, pp. 9741-9748; Fielding, L.A., Lane, J.A., Derry, M.J., Mykhaylyk, O.O., Armes, S.P., (2014) J. Am. Chem. Soc., 136, pp. 5790-5798; Cunningham, V.J., Ratcliffe, L.P.D., Blanazs, A., Warren, N.J., Smith, A.J., Mykhaylyk, O.O., Armes, S.P., (2014) Polym. Chem., 5, pp. 6307-6317; Figg, C.A., Simula, A., Gebre, K.A., Tucker, B.S., Haddleton, D.M., Sumerlin, B.S., (2015) Chem. Sci., 6, pp. 1230-1236; Zhulina, E.B., Adam, M., Larue, I., Sheiko, S.S., Rubinstein, M., (2005) Macromolecules, 38, pp. 5330-5351; Larue, I., Adam, M., Pitsikalis, M., Hadjichristidis, N., Rubinstein, M., Sheiko, S.S., (2006) Macromolecules, 39, pp. 309-314; Bhargava, P., Tu, Y.F., Zheng, J.X., Xiong, H.M., Quirk, R.P., Cheng, S.Z.D., (2007) J. Am. Chem. Soc., 129, pp. 1113-1121; Raghavan, S.R., Douglas, J.F., (2012) Soft Matter, 8, pp. 8539-8546; Truong, N.P., Quinn, J.F., Anastasaki, A., Haddleton, D.M., Whittaker, M.R., Davis, T.P., (2016) Chem. Commun., 52, pp. 4497-4500; Jones, E.R., Semsarilar, M., Wyman, P., Boerakker, M., Armes, S.P., (2016) Polym. Chem., 7, pp. 851-859; Jia, Z.F., Bobrin, V.A., Truong, N.P., Gillard, M., Monteiro, M.J., (2014) J. Am. Chem. Soc., 136, pp. 5824-5827; Wang, H., Patil, A.J., Liu, K., Petrov, S., Mann, S., Winnik, M.A., Manners, I., (2009) Adv. Mater., 21, pp. 1805-1808; Zhang, M., Wang, M.F., He, S., Qian, J.S., Saffari, A., Lee, A., Kumar, S., Winnik, M.A., (2010) Macromolecules, 43, pp. 5066-5074; Bleach, R., Karagoz, B., Prakash, S.M., Davis, T.P., Boyer, C., (2014) ACS Macro Lett., 3, pp. 591-596; Yan, X.H., Liu, G.J., Li, Z., (2004) J. Am. Chem. Soc., 126, pp. 10059-10066; Gould, O.E.C., Qiu, H.B., Lunn, D.J., Rowden, J., Harniman, R.L., Hudson, Z.M., Winnik, M.A., Manners, I., (2015) Nat. Commun., 6, p. 10009; Kumar, S., Anselmo, A.C., Banerjee, A., Zakrewsky, M., Mitragotri, S., (2015) J. Controlled Release, 220, pp. 141-148; Mitchell, D.E., Lovett, J.R., Armes, S.P., Gibson, M.I., (2016) Angew. Chem., Int. Ed., 55, pp. 2801-2804; Oltra, N.S., Nair, P., Discher, D.E., (2014) Annu. Rev. Chem. Biomol., 5, pp. 281-299; Oltra, N.S., Swift, J., Mahmud, A., Rajagopal, K., Loverde, S.M., Discher, D.E., (2013) J. Mater. Chem. B, 1, pp. 5177-5185; Truong, N.P., Whittaker, M.R., Mak, C.W., Davis, T.P., (2015) Expert Opin. Drug Delivery, 12, pp. 129-142; Venkataraman, S., Hedrick, J.L., Ong, Z.Y., Yang, C., Ee, P.L.R., Hammond, P.T., Yang, Y.Y., (2011) Adv. Drug Delivery Rev., 63, pp. 1228-1246; Champion, J.A., Katare, Y.K., Mitragotri, S., (2007) J. Controlled Release, 121, pp. 3-9; Truong, N.P., Gu, W.Y., Prasadam, I., Jia, Z.F., Crawford, R., Xiao, Y., Monteiro, M.J., (2013) Nat. Commun., 4; Dalhaimer, P., Bermudez, H., Discher, D.E., (2004) J. Polym. Sci., Part B: Polym. Phys., 42, pp. 168-176; Karagoz, B., Esser, L., Duong, H.T., Basuki, J.S., Boyer, C., Davis, T.P., (2014) Polym. Chem., 5, pp. 350-355; Cai, S.S., Vijayan, K., Cheng, D., Lima, E.M., Discher, D.E., (2007) Pharm. Res., 24, pp. 2099-2109; Yu, H.J., Xu, Z.A., Wang, D.G., Chen, X.Z., Zhang, Z.W., Yin, Q., Li, Y.P., (2013) Polym. Chem., 4, pp. 5052-5055; Karagoz, B., Boyer, C., Davis, T.P., (2014) Macromol. Rapid Commun., 35, pp. 417-421; Elsabahy, M., Shrestha, R., Clark, C., Taylor, S., Leonard, J., Wooley, K.L., (2013) Nano Lett., 13, pp. 2172-2181; Barua, S., Mitragotri, S., (2013) ACS Nano, 7, pp. 9558-9570; Lee, S.E., Bairstow, S.F., Werling, J.O., Chaubal, M.V., Lin, L., Murphy, M.A., Diorio, J.P., Hoffman, R.M., (2014) Pharm. Dev. Technol., 19, pp. 438-453; Vllasaliu, D., Fowler, R., Stolnik, S., (2014) Expert Opin. Drug Delivery, 11, pp. 139-154; Macdonald, I.C., Schmidt, E.E., Groom, A.C., (1991) Microvasc. Res., 42, pp. 60-76; Dalhaimer, P., Bates, F.S., Discher, D.E., (2003) Macromolecules, 36, pp. 6873-6877; Champion, J.A., Mitragotri, S., (2009) Pharm. Res., 26, pp. 244-249; Sharma, G., Valenta, D.T., Altman, Y., Harvey, S., Xie, H., Mitragotri, S., Smith, J.W., (2010) J. Controlled Release, 147, pp. 408-412; Bruckman, M.A., Randolph, L.N., Vanmeter, A., Hern, S., Shoffstall, A.J., Taurog, R.E., Steinmetz, N.F., (2014) Virology, 449, pp. 163-173; Arnida, Janat-Amsbury, M.M., Ray, A., Peterson, C.M., Ghandehari, H., (2011) Eur. J. Pharm. Biopharm., 77, pp. 417-423; Zhou, Z.X., Ma, X.P., Jin, E.L., Tang, J.B., Sui, M.H., Shen, Y.Q., Van Kirk, E.A., Radosz, M., (2013) Biomaterials, 34, pp. 5722-5735; Wang, Y.J., Wang, D., Fu, Q., Liu, D., Ma, Y., Racette, K., He, Z.G., Liu, F., (2014) Mol. Pharm., 11, pp. 3766-3771; Christian, D.A., Cai, S., Garbuzenko, O.B., Harada, T., Allison, L., Minko, T., Discher, D.E., (2009) Mol. Pharm., 6, pp. 1343-1352; Chu, K.S., Hasan, W., Rawal, S., Walsh, M.D., Enlow, E.M., Luft, J.C., Bridges, A.S., Desimone, J.M., (2013) Nanomed. Nanotechnol., 9, pp. 686-693; Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., Chen, X., Dai, H., (2007) Nat. Nanotechnol., 2, pp. 47-52; Black, K.C.L., Wang, Y.C., Luehmann, H.P., Cai, X., Xing, W.X., Pang, B., Zhao, Y.F., Xia, Y.N., (2014) ACS Nano, 8, pp. 4385-4394; Kim, Y., Dalhaimer, P., Christian, D.A., Discher, D.E., (2005) Nanotechnology, 16, pp. S484-S491; Lee, K.L., Hubbard, L.C., Hern, S., Yildiz, I., Gratzl, M., Steinmetz, N.F., (2013) Biomater. Sci., 1, pp. 581-588; Chauhan, V.P., Popović, Z., Chen, O., Cui, J., Fukumura, D., Bawendi, M.G., Jain, R.K., (2011) Angew. Chem., Int. Ed., 123, pp. 11619-11622; Pluen, A., Netti, P.A., Jain, R.K., Berk, D.A., (1999) Biophys. J., 77, pp. 542-552; Howard, M., Zern, B.J., Anselmo, A.C., Shuvaev, V.V., Mitragotri, S., Muzykantov, V., (2014) ACS Nano, 8, pp. 4100-4132; Pillai, J.D., Dunn, S.S., Napier, M.E., Desimone, J.M., (2011) IUBMB Life, 63, pp. 596-606; Dalhaimer, P., Engler, A.J., Parthasarathy, R., Discher, D.E., (2004) Biomacromolecules, 5, pp. 1714-1719; Shuvaev, V.V., Ilies, M.A., Simone, E., Zaitsev, S., Kim, Y., Cai, S.S., Mahmud, A., Muzykantov, V.R., (2011) ACS Nano, 5, pp. 6991-6999; Kolhar, P., Anselmo, A.C., Gupta, V., Pant, K., Prabhakarpandian, B., Ruoslahti, E., Mitragotri, S., (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 10753-10758; Muro, S., Garnacho, C., Champion, J.A., Leferovich, J., Gajewski, C., Schuchman, E.H., Mitragotri, S., Muzykantov, V.R., (2008) Mol. Ther., 16, pp. 1450-1458
PY - 2016/7/14
Y1 - 2016/7/14
N2 - Filomicelles and nanoworms are an emerging subclass of nanomaterials with a special elongated shape. The physical properties of a filomicelle are distinct from a traditional spherical micelle, and as such have attracted tremendous interest in a variety of research areas. In this review, we highlight the substantial progress in the synthesis and application of polymeric nanoworms over the past two decades. Synthetic techniques summarized in this review are particle replication in nonwetting templates (PRINT), film stretching, self-assembly (SA), crystallization-driven self-assembly (CDSA), polymerization-induced self-assembly (PISA), and temperature-induced morphological transformation (TIMT). The applications of filomicelles as (i) templates for inorganic nanoparticles, (ii) building blocks for superstructures, (iii) synthetic dendritic cells for immunotherapy, (iv) constituents of thermoresponsive gels for biomedical applications, and (v) nanocarriers for cancer drug delivery are subsequently discussed. In the conclusion, we describe the current trajectory of research in the field and identify areas where further developments are of urgent need.
AB - Filomicelles and nanoworms are an emerging subclass of nanomaterials with a special elongated shape. The physical properties of a filomicelle are distinct from a traditional spherical micelle, and as such have attracted tremendous interest in a variety of research areas. In this review, we highlight the substantial progress in the synthesis and application of polymeric nanoworms over the past two decades. Synthetic techniques summarized in this review are particle replication in nonwetting templates (PRINT), film stretching, self-assembly (SA), crystallization-driven self-assembly (CDSA), polymerization-induced self-assembly (PISA), and temperature-induced morphological transformation (TIMT). The applications of filomicelles as (i) templates for inorganic nanoparticles, (ii) building blocks for superstructures, (iii) synthetic dendritic cells for immunotherapy, (iv) constituents of thermoresponsive gels for biomedical applications, and (v) nanocarriers for cancer drug delivery are subsequently discussed. In the conclusion, we describe the current trajectory of research in the field and identify areas where further developments are of urgent need.
KW - Medical applications
KW - Nanoparticles
KW - Biomedical applications
KW - Cancer drug deliveries
KW - Inorganic nanoparticle
KW - Morphological transformations
KW - Nonwetting templates
KW - Synthetic techniques
KW - Temperature-induced
KW - Thermoresponsive gel
KW - Self assembly
UR - http://www.scopus.com/inward/record.url?scp=84976591000&partnerID=8YFLogxK
U2 - 10.1039/c6py00639f
DO - 10.1039/c6py00639f
M3 - Review Article
VL - 7
SP - 4295
EP - 4312
JO - Polymer Chemistry
JF - Polymer Chemistry
SN - 1759-9954
IS - 26
ER -