Abstract
The synthesis of polymers with latent reactivity suitable for 'click' type modifications in a tandem post-polymerisation modification process starting with poly(azlactone) precursors is investigated. Poly(azlactones), obtained by copper(i) mediated radical polymerisation, were functionalised in a one-pot process with amines bearing functional groups which are incompatible with controlled radical polymerisation: alkynes, alkenes, furfuryl and phenol. The reaction is quantitative and 100% atom efficient presenting an efficient route to clickable scaffolds without the need for protecting group chemistry. Additionally, the poly(azlactones) were exploited to obtain synthetic glycopolymers. The ring opening procedure introduces a 5-atom spacer between glycan and backbone, which provides improved access to carbohydrate-binding proteins with deep binding pockets, such as the cholera toxin, for anti-adhesion applications.
Original language | English |
---|---|
Pages (from-to) | 717-723 |
Number of pages | 7 |
Journal | Polymer Chemistry |
Volume | 4 |
Issue number | 3 |
DOIs | |
Publication status | Published - 7 Feb 2013 |
Externally published | Yes |