TY - JOUR
T1 - Plant defensins NaD1 and NaD2 induce different stress response pathways in fungi
AU - Dracatos, Peter M.
AU - Payne, Jennifer
AU - Di Pietro, Antonio
AU - Anderson, Marilyn A.
AU - Plummer, Kim M.
PY - 2016/9/3
Y1 - 2016/9/3
N2 - Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (AnΔpmtA, AnΔpmtB, and AnΔpmtC). AnΔpmtA was resistant to both defensins, while AnΔpmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2.
AB - Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (AnΔpmtA, AnΔpmtB, and AnΔpmtC). AnΔpmtA was resistant to both defensins, while AnΔpmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2.
KW - Antifungal defensins
KW - CWI signalling pathway
KW - HOG signalling pathway
KW - NaD1 and NaD2
UR - http://www.scopus.com/inward/record.url?scp=84985912261&partnerID=8YFLogxK
U2 - 10.3390/ijms17091473
DO - 10.3390/ijms17091473
M3 - Article
AN - SCOPUS:84985912261
VL - 17
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
SN - 1422-0067
IS - 9
M1 - 1473
ER -