TY - JOUR
T1 - PIXImus bone densitometer and associated technical measurement issues of skeletal growth in the young rat
AU - Soon, G.
AU - Quintin, A.
AU - Scalfo, F.
AU - Antille, N.
AU - Williamson, G.
AU - Offord, E.
AU - Ginty, F.
PY - 2006/3/1
Y1 - 2006/3/1
N2 - The PIXImus dual-energy X-ray absorptiometer (DXA) is designed to measure body composition, bone mineral content (BMC), area (BA), and density (BMD) in mice and rats. The aims of this study were to longitudinally measure BMC, BA, and BMD in growing rats and to identify potential technical problems associated with the PIXImus. Total femur and lumbar DXA measurements, body weight, and length of initially 3-week-old rats (n = 10) were taken at weeks 5, 9, and 14. BMC and BMD of femoral metaphyseal and diaphyseal regions rich in trabecular and cortical bone, respectively, were obtained. Results showed significant increases in body weight, total femur BMC and BMD, lumbar area, length, BMC, and BMD at each time point. There was a significant positive correlation between body weight and total femur BMD (r = 0.97, P < 0.001) as well as lumbar BMD (r = 0.99, P < 0.001). BMD values for the femoral metaphyseal region and the lumbar spine were also positively correlated (r = 0.96, P < 0.01). Several technical issues (e.g., positioning of animals), difficulties (e.g., in analysis of images), and limitations (e.g., inability to detect underdeveloped calcified bone in growing animals and bone edge detection) of the software pertinent to the PIXImus were evident. In conclusion, despite limitations in the software, the PIXImus is a valuable tool for studying skeletal development of growing rats.
AB - The PIXImus dual-energy X-ray absorptiometer (DXA) is designed to measure body composition, bone mineral content (BMC), area (BA), and density (BMD) in mice and rats. The aims of this study were to longitudinally measure BMC, BA, and BMD in growing rats and to identify potential technical problems associated with the PIXImus. Total femur and lumbar DXA measurements, body weight, and length of initially 3-week-old rats (n = 10) were taken at weeks 5, 9, and 14. BMC and BMD of femoral metaphyseal and diaphyseal regions rich in trabecular and cortical bone, respectively, were obtained. Results showed significant increases in body weight, total femur BMC and BMD, lumbar area, length, BMC, and BMD at each time point. There was a significant positive correlation between body weight and total femur BMD (r = 0.97, P < 0.001) as well as lumbar BMD (r = 0.99, P < 0.001). BMD values for the femoral metaphyseal region and the lumbar spine were also positively correlated (r = 0.96, P < 0.01). Several technical issues (e.g., positioning of animals), difficulties (e.g., in analysis of images), and limitations (e.g., inability to detect underdeveloped calcified bone in growing animals and bone edge detection) of the software pertinent to the PIXImus were evident. In conclusion, despite limitations in the software, the PIXImus is a valuable tool for studying skeletal development of growing rats.
KW - Bone mineral content
KW - Femur
KW - Growing rat
KW - Lumbar spine
KW - PIXImus densitometer
UR - http://www.scopus.com/inward/record.url?scp=33645276847&partnerID=8YFLogxK
U2 - 10.1007/s00223-005-0191-8
DO - 10.1007/s00223-005-0191-8
M3 - Article
C2 - 16547639
AN - SCOPUS:33645276847
SN - 0171-967X
VL - 78
SP - 186
EP - 192
JO - Calcified Tissue International
JF - Calcified Tissue International
IS - 3
ER -