Projects per year
Abstract
The low absorptivity of monolayer or few-layer graphene is one of the key limitations for high performance. To improve the graphene absorption, highly nanostructured or metallic systems have been usually employed, which however rely on the advanced nanofabrication with high cost or strong metallic parasitic absorption. In this study, via thin-film optics, the photonic surface waves based on purely dielectric planar system are proposed to realize perfect optical absorption by monolayer graphene with the thickness of ~ 0.34 nm. The Bloch surface wave (BSW) is found to be excited efficiently from 7-layer dielectric system by carefully addressing the admittance matching conditions, electric/magnetic field confinement, and band structure. Coupling with the strongly localized BSW field, a monolayer graphene shows an absorption ~ 100% at the designed infrared band (1310 nm, which can be tuned readily). With detailedly addressing the excitation condition of BSW, it is found that the perfect absorber can also be realized based on the more generalized surface waves from aperiodic structure. It is believed that the thin-film and purely dielectric surface wave system provides two-dimensional devices a promising opportunity for low-cost and high-performance applications.
| Original language | English |
|---|---|
| Pages (from-to) | 161-169 |
| Number of pages | 9 |
| Journal | Nano Energy |
| Volume | 48 |
| DOIs | |
| Publication status | Published - 1 Jun 2018 |
Keywords
- Admittance loci
- Bloch surface wave
- Graphene perfect absorber
- Surface wave
- Thin-film optics
Projects
- 1 Finished
-
ARC Centre of Excellence in Future Low-energy Electronics Technologies
Fuhrer, M. (Primary Chief Investigator (PCI)), Bao, Q. (Chief Investigator (CI)), Culcer, D. (Chief Investigator (CI)), Davis, M. (Chief Investigator (CI)), Davis, J. A. (Chief Investigator (CI)), Hamilton, A. (Chief Investigator (CI)), Helmerson, K. (Chief Investigator (CI)), Klochan, O. (Chief Investigator (CI)), Medhekar, N. (Chief Investigator (CI)), Ostrovskaya, E. A. (Chief Investigator (CI)), Parish, M. (Chief Investigator (CI)), Schiffrin, A. (Chief Investigator (CI)), Seidel, J. (Chief Investigator (CI)), Sushkov, O. (Chief Investigator (CI)), Valanoor, N. (Chief Investigator (CI)), Wang, X. (Chief Investigator (CI)), Galitskiy, V. (Partner Investigator (PI)), Gurarie, V. (Partner Investigator (PI)), Hannon, J. (Partner Investigator (PI)), Höfling, S. (Partner Investigator (PI)), Hone, J. (Partner Investigator (PI)), Rule, K. C. (Partner Investigator (PI)), Krausz, F. (Partner Investigator (PI)), Littlewood, P. (Partner Investigator (PI)), MacDonald, A. (Partner Investigator (PI)), Neto, A. (Partner Investigator (PI)), Oezyilmaz, B. (Partner Investigator (PI)), Paglione, J. (Partner Investigator (PI)), Phillips, W. (Partner Investigator (PI)), Spielman, I. (Partner Investigator (PI)), Tadich, A. (Partner Investigator (PI)), Xue, Q. (Partner Investigator (PI)), Cole, J. (Chief Investigator (CI)), Perali, A. (Partner Investigator (PI)), Neilson, D. (Partner Investigator (PI)), Sek, G. (Partner Investigator (PI)), Gaston, N. (Partner Investigator (PI)), Hodgkiss, J. M. (Partner Investigator (PI)), Tang, M. (Partner Investigator (PI)), Karel, J. (Chief Investigator (CI)), Nguyen, T.-L. (Project Manager), Adam, S. (Partner Investigator (PI)), Granville, S. (Partner Investigator (PI)), Kumar, P. V. (Chief Investigator (CI)) & Daeneke, T. (Chief Investigator (CI))
ARC - Australian Research Council, Monash University – Internal School Contribution, Monash University – Internal Department Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal University Contribution, University of Wollongong, University of Queensland , Tsinghua University, University of New South Wales (UNSW), Australian National University (ANU), RMIT University, Swinburne University of Technology
29/06/17 → 28/06/24
Project: Research