Abstract
Mn (0.5%, 1%, 1.5% and 2%) doped and undoped ZnO nanoparticles (NPs) capped with PVP (1.0%) were successfully synthesized via co-precipitation approach using zinc acetate, sodium hydroxide and manganese acetate as precursors. Structural analysis was performed by XRD confirming phase purity and crystalline wurtzite structure. TEM results show average particle size 15-20 nm and 22-25 nm for Mn (1%) and Mn (2%) doped ZnO NPs respectively. Manganese (Mn) doping has led to reduction in band gap which facilitate the absorption of radiation in visible region. The Photocatalytic activity of undoped and Mn (0.5%,1%,1.5% and 2%) doped NPs was analyzed via degradation of crystal violet (CV) dye. The crystal violet decomposition rate of undoped and Mn doped NPs were studied under UV-visible region. It is observed from degradation studies that the doping has a pronounced effect on the photocatalytic activity of ZnO NPs. Kinetic studies shows that photo degradation of CV follow a pseudo first-order kinetic law. Experiments for reusability of Mn (1%) doped with PVP (1%) capped ZnO were also performed to determine the stability of as prepared sample. It shows an increase in catalytic activity of NPs by small amount when exposed to UV irradiation for 3 h. Photoluminescence and UV-Visible absorption spectroscopy studies were also performed for studying the effect of UV irradiation on the surface of ZnO NPs.
Original language | English |
---|---|
Pages (from-to) | 2725-2733 |
Number of pages | 9 |
Journal | Journal of Nanoscience and Nanotechnology |
Volume | 14 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2014 |
Externally published | Yes |
Keywords
- Doping
- Nanoparticles
- Photocatalytic Degradation
- Zinc Oxide