Projects per year
Abstract
The excellent optoelectronic properties and structural stability of inorganic cesium lead halide perovskites make them promising candidates for multiple types of optoelectronic devices. However, it remains a challenge to fabricate monocrystalline phase-pure perovskite microstructures by facile low-temperature solution-based methods. Herein, a solution-based method is demonstrated for controlling the crystallization of cesium halide perovskite microstructures. The structure of perovskite crystals is successfully tuned from non-corner sharing Cs4PbBr6 (0D) to corner-sharing CsPbBr3 (3D) to layered CsPb2Br5 (2D) by controlling water (H2O) to dimethylsulfoxide (DMSO) ratios. Molecular dynamics simulations and thermodynamic analysis indicate that the relative stability of Pb2+ and Br− ions in solution is the key factor in determining which crystals form at different H2O/DMSO ratios, with Cs+ simply incorporated as needed. The phase-pure 0D crystals exhibit a high photoluminescence quantum yield of 41%, whilst the 2D crystals have an onset of absorption at 350 nm. Furthermore, the as-synthesized, highly uniform 3D perovskite single crystals are coupled with nanofabricated interdigitated electrodes to show excellent X-ray detection, with a high sensitivity of 8000 μC Gyair−1cm−2 obtained under a 0.5V external bias. This is comparable to many commercial X-ray detectors (Si, α-Se) and several times higher than other reported inorganic perovskite materials (CsPbBr3 quantum dots, Cs2AgBiBr6).
Original language | English |
---|---|
Article number | 2109442 |
Number of pages | 10 |
Journal | Advanced Functional Materials |
Volume | 32 |
Issue number | 16 |
DOIs | |
Publication status | Published - 19 Apr 2021 |
Keywords
- molecular dynamic simulation
- perovskite
- phase transformation
- single crystals
- X-ray detector
Projects
- 1 Finished
-
ARC Centre of Excellence in Exciton Science
Mulvaney, P., Ghiggino, K. P., Smith, T. A., Sader, J. E., Wong, W. W. H., Russo, S. P., Cole, J., Jasieniak, J., Funston, A., Bach, U., Cheng, Y., Lakhwani, G., Widmer-Cooper, A., McCamey, D., Schmidt, T., Gomez, D. E., Scholes, F., McCallum, R., Dicinoski, G., Du, C., Plenio, M. B., Tiang, J., Neaton, J., Lippitz, M. & Hao, X.
Monash University – Internal School Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal Department Contribution, Monash University – Internal University Contribution
30/06/17 → 30/06/24
Project: Research
Press/Media
-
Water-based Advance Electronics
Sebastian Fürer
20/05/22
1 item of Media coverage
Press/Media: Article/Feature
-
Making Advanced Electronics With Water
Sebastian Fürer
19/05/22
1 item of Media coverage
Press/Media: Article/Feature
-
The way of water: Making advanced electronics with H2O
Sebastian Fürer
17/05/22
1 item of Media coverage
Press/Media: Article/Feature
Equipment
-
Centre for Electron Microscopy (MCEM)
Flame Sorrell (Manager) & Peter Miller (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility