PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana

Edwin Lampugnani, Aydin Kilinc, David Robert Smyth

Research output: Contribution to journalArticleResearchpeer-review

48 Citations (Scopus)

Abstract

Flower primordia are partitioned by boundaries during their early development. Such boundaries occur between whorls of organs, and also between organs within whorls. PETAL LOSS (PTL) is a trihelix transcription factor gene that is expressed in boundaries between sepal primordia in the outer whorl. Over-expression of PTL results in growth suppression suggesting that PTL normally inhibits growth between newly arising sepals. We have tested this by examining the consequences of loss of PTL function using confocal imaging. The size of the inter-sepal zone in stage 4 buds expands radially by 3540 in ptl-1 mutants as a consequence of additional cell proliferation. There is no change in the size of PTL-expressing cells. PTL expression does not overlap with the sites of petal initiation identified using the DR5 auxin response reporter. The latter are closer to the centre of the flower. Thus the consequence of loss of PTL function on petal initiation is indirect, perhaps through interference with a mobile petal-initiation signal or movement of the PTL protein. CUP-SHAPED COTYLEDON (CUC) genes are also involved in defining inter-sepal boundaries. However, genetic studies combining ptl with loss of cuc1 function, and gain of CUC function in extra early petals-1 (miR164c) mutants, have revealed that CUC and PTL act differently. CUC suppresses growth of sepal tissues from the boundary region whereas PTL acts to keep the size of the boundary in check.
Original languageEnglish
Pages (from-to)724 - 735
Number of pages12
JournalThe Plant Journal
Volume71
Issue number5
DOIs
Publication statusPublished - 2012

Cite this