Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei

Natalie R. Lazar Adler, Elizabeth M. Allwood, Deanna Deveson Lucas, Paul Harrison, Stephen Watts, Alexandra Dimitropoulos, Puthayalai Treerat, Priyangi Alwis, Rodney J. Devenish, Mark Prescott, Brenda Govan, Ben Adler, Marina Harper, John D. Boyce

Research output: Contribution to journalArticleResearchpeer-review

5 Citations (Scopus)

Abstract

BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a severe invasive disease of humans and animals. Initial screening of a B. pseudomallei signature-tagged mutagenesis library identified an attenuated mutant with a transposon insertion in a gene encoding the sensor component of an uncharacterised two-component signal transduction system (TCSTS), which we designated BprRS. RESULTS: Single gene inactivation of either the response regulator gene (bprR) or the sensor histidine kinase gene (bprS) resulted in mutants with reduced swarming motility and reduced virulence in mice. However, a bprRS double mutant was not attenuated for virulence and displayed wild-type levels of motility. The transcriptomes of the bprS, bprR and bprRS mutants were compared with the transcriptome of the parent strain K96243. Inactivation of the entire BprRS TCSTS (bprRS double mutant) resulted in altered expression of only nine genes, including both bprR and bprS, five phage-related genes and bpss0686, encoding a putative 5, 10-methylene tetrahydromethanopterin reductase involved in one carbon metabolism. In contrast, the transcriptomes of each of the bprR and bprS single gene mutants revealed more than 70 differentially expressed genes common to both mutants, including regulatory genes and those required for flagella assembly and for the biosynthesis of the cytotoxic polyketide, malleilactone. CONCLUSIONS: Inactivation of the entire BprRS TCSTS did not alter virulence or motility and very few genes were differentially expressed indicating that the definitive BprRS regulon is relatively small. However, loss of a single component, either the sensor histidine kinase BprS or its cognate response regulator BprR, resulted in significant transcriptomic and phenotypic differences from the wild-type strain. We hypothesize that the dramatically altered phenotypes of these single mutants are the result of cross-regulation with one or more other TCSTSs and concomitant dysregulation of other key regulatory genes.
Original languageEnglish
Article number331
Number of pages17
JournalBMC Genomics
Volume17
DOIs
Publication statusPublished - 4 May 2016

Keywords

  • Burkholderia pseudomallei
  • Two-component signal transduction
  • Transcriptomics
  • Flagella
  • virulence

Cite this

Lazar Adler, Natalie R. ; Allwood, Elizabeth M. ; Deveson Lucas, Deanna ; Harrison, Paul ; Watts, Stephen ; Dimitropoulos, Alexandra ; Treerat, Puthayalai ; Alwis, Priyangi ; Devenish, Rodney J. ; Prescott, Mark ; Govan, Brenda ; Adler, Ben ; Harper, Marina ; Boyce, John D. / Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei. In: BMC Genomics. 2016 ; Vol. 17.
@article{b9af714011204ed484635b39a3d0c9f2,
title = "Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei",
abstract = "BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a severe invasive disease of humans and animals. Initial screening of a B. pseudomallei signature-tagged mutagenesis library identified an attenuated mutant with a transposon insertion in a gene encoding the sensor component of an uncharacterised two-component signal transduction system (TCSTS), which we designated BprRS. RESULTS: Single gene inactivation of either the response regulator gene (bprR) or the sensor histidine kinase gene (bprS) resulted in mutants with reduced swarming motility and reduced virulence in mice. However, a bprRS double mutant was not attenuated for virulence and displayed wild-type levels of motility. The transcriptomes of the bprS, bprR and bprRS mutants were compared with the transcriptome of the parent strain K96243. Inactivation of the entire BprRS TCSTS (bprRS double mutant) resulted in altered expression of only nine genes, including both bprR and bprS, five phage-related genes and bpss0686, encoding a putative 5, 10-methylene tetrahydromethanopterin reductase involved in one carbon metabolism. In contrast, the transcriptomes of each of the bprR and bprS single gene mutants revealed more than 70 differentially expressed genes common to both mutants, including regulatory genes and those required for flagella assembly and for the biosynthesis of the cytotoxic polyketide, malleilactone. CONCLUSIONS: Inactivation of the entire BprRS TCSTS did not alter virulence or motility and very few genes were differentially expressed indicating that the definitive BprRS regulon is relatively small. However, loss of a single component, either the sensor histidine kinase BprS or its cognate response regulator BprR, resulted in significant transcriptomic and phenotypic differences from the wild-type strain. We hypothesize that the dramatically altered phenotypes of these single mutants are the result of cross-regulation with one or more other TCSTSs and concomitant dysregulation of other key regulatory genes.",
keywords = "Burkholderia pseudomallei, Two-component signal transduction, Transcriptomics, Flagella, virulence",
author = "{Lazar Adler}, {Natalie R.} and Allwood, {Elizabeth M.} and {Deveson Lucas}, Deanna and Paul Harrison and Stephen Watts and Alexandra Dimitropoulos and Puthayalai Treerat and Priyangi Alwis and Devenish, {Rodney J.} and Mark Prescott and Brenda Govan and Ben Adler and Marina Harper and Boyce, {John D.}",
year = "2016",
month = "5",
day = "4",
doi = "10.1186/s12864-016-2668-4",
language = "English",
volume = "17",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central",

}

Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei. / Lazar Adler, Natalie R.; Allwood, Elizabeth M.; Deveson Lucas, Deanna; Harrison, Paul; Watts, Stephen; Dimitropoulos, Alexandra; Treerat, Puthayalai; Alwis, Priyangi; Devenish, Rodney J.; Prescott, Mark; Govan, Brenda; Adler, Ben; Harper, Marina; Boyce, John D.

In: BMC Genomics, Vol. 17, 331, 04.05.2016.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei

AU - Lazar Adler, Natalie R.

AU - Allwood, Elizabeth M.

AU - Deveson Lucas, Deanna

AU - Harrison, Paul

AU - Watts, Stephen

AU - Dimitropoulos, Alexandra

AU - Treerat, Puthayalai

AU - Alwis, Priyangi

AU - Devenish, Rodney J.

AU - Prescott, Mark

AU - Govan, Brenda

AU - Adler, Ben

AU - Harper, Marina

AU - Boyce, John D.

PY - 2016/5/4

Y1 - 2016/5/4

N2 - BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a severe invasive disease of humans and animals. Initial screening of a B. pseudomallei signature-tagged mutagenesis library identified an attenuated mutant with a transposon insertion in a gene encoding the sensor component of an uncharacterised two-component signal transduction system (TCSTS), which we designated BprRS. RESULTS: Single gene inactivation of either the response regulator gene (bprR) or the sensor histidine kinase gene (bprS) resulted in mutants with reduced swarming motility and reduced virulence in mice. However, a bprRS double mutant was not attenuated for virulence and displayed wild-type levels of motility. The transcriptomes of the bprS, bprR and bprRS mutants were compared with the transcriptome of the parent strain K96243. Inactivation of the entire BprRS TCSTS (bprRS double mutant) resulted in altered expression of only nine genes, including both bprR and bprS, five phage-related genes and bpss0686, encoding a putative 5, 10-methylene tetrahydromethanopterin reductase involved in one carbon metabolism. In contrast, the transcriptomes of each of the bprR and bprS single gene mutants revealed more than 70 differentially expressed genes common to both mutants, including regulatory genes and those required for flagella assembly and for the biosynthesis of the cytotoxic polyketide, malleilactone. CONCLUSIONS: Inactivation of the entire BprRS TCSTS did not alter virulence or motility and very few genes were differentially expressed indicating that the definitive BprRS regulon is relatively small. However, loss of a single component, either the sensor histidine kinase BprS or its cognate response regulator BprR, resulted in significant transcriptomic and phenotypic differences from the wild-type strain. We hypothesize that the dramatically altered phenotypes of these single mutants are the result of cross-regulation with one or more other TCSTSs and concomitant dysregulation of other key regulatory genes.

AB - BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a severe invasive disease of humans and animals. Initial screening of a B. pseudomallei signature-tagged mutagenesis library identified an attenuated mutant with a transposon insertion in a gene encoding the sensor component of an uncharacterised two-component signal transduction system (TCSTS), which we designated BprRS. RESULTS: Single gene inactivation of either the response regulator gene (bprR) or the sensor histidine kinase gene (bprS) resulted in mutants with reduced swarming motility and reduced virulence in mice. However, a bprRS double mutant was not attenuated for virulence and displayed wild-type levels of motility. The transcriptomes of the bprS, bprR and bprRS mutants were compared with the transcriptome of the parent strain K96243. Inactivation of the entire BprRS TCSTS (bprRS double mutant) resulted in altered expression of only nine genes, including both bprR and bprS, five phage-related genes and bpss0686, encoding a putative 5, 10-methylene tetrahydromethanopterin reductase involved in one carbon metabolism. In contrast, the transcriptomes of each of the bprR and bprS single gene mutants revealed more than 70 differentially expressed genes common to both mutants, including regulatory genes and those required for flagella assembly and for the biosynthesis of the cytotoxic polyketide, malleilactone. CONCLUSIONS: Inactivation of the entire BprRS TCSTS did not alter virulence or motility and very few genes were differentially expressed indicating that the definitive BprRS regulon is relatively small. However, loss of a single component, either the sensor histidine kinase BprS or its cognate response regulator BprR, resulted in significant transcriptomic and phenotypic differences from the wild-type strain. We hypothesize that the dramatically altered phenotypes of these single mutants are the result of cross-regulation with one or more other TCSTSs and concomitant dysregulation of other key regulatory genes.

KW - Burkholderia pseudomallei

KW - Two-component signal transduction

KW - Transcriptomics

KW - Flagella

KW - virulence

UR - http://www.ncbi.nlm.nih.gov/pubmed/27147217

U2 - 10.1186/s12864-016-2668-4

DO - 10.1186/s12864-016-2668-4

M3 - Article

VL - 17

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

M1 - 331

ER -