Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice

Julia Choate, Edward J Danson, J F Morris, David J Paterson

Research output: Contribution to journalArticleResearchpeer-review

86 Citations (Scopus)

Abstract

The role of nitric oxide (NO) in the vagal control of heart rate (HR) is controversial. We investigated the cholinergic regulation of HR in isolated atrial preparations with an intact right vagus nerve from wild-type (nNOS+/+, n = 81) and neuronal NO synthase (nNOS) knockout (nNOS-/-, n = 43) mice. nNOS was immunofluorescently colocalized within choline-acetyltransferase-positive neurons in nNOS+/+ atria. The rate of decline in HR during vagal nerve stimulation (VNS, 3 and 5 Hz) was slower in nNOS-/- compared with nNOS+/+ atria in vitro (P <0.01). There was no difference between the HR responses to carbamylcholine in nNOS+/+ and nNOS-/- atria. Selective nNOS inhibitors, vinyl-L-niohydrochloride or 1-2-trifluoromethylphenyl imidazole, or the guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one significantly (P <0.05) attenuated the decrease in HR with VNS at 3 Hz in nNOS+/+ atria. NOS inhibition had no effect in nNOS-/- atria during VNS. In all atria, the NO donor sodium nitroprusside significantly enhanced the magnitude of the vagal-induced bradycardia, showing the downstream intracellular pathways activated by NO were intact. These results suggest that neuronal NO facilitates vagally induced bradycardia via a presynaptic modulation of neurotransmission.
Original languageEnglish
Pages (from-to)2310 - 2317
Number of pages8
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume281
Issue number6
Publication statusPublished - 2001

Cite this