TY - JOUR
T1 - Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem
AU - Junaid, Muhammad
AU - Ali, Sajid
AU - Siddiqui, Isma Farah
AU - Nam, Choonsung
AU - Qureshi, Nawab Muhammad Faseeh
AU - Kim, Jaehyoun
AU - Shin, Dong Ryeol
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/10
Y1 - 2022/10
N2 - Artificial intelligence, specifically machine learning, has been applied in a variety of methods by the research group to transform several data sources into valuable facts and understanding, allowing for superior pattern identification skills. Machine learning algorithms on huge and complicated data sets, computationally expensive on the other hand, processing requires hardware and logical resources, such as space, CPU, and memory. As the amount of data created daily reaches quintillion bytes, A complex big data infrastructure becomes more and more relevant. Apache Spark Machine learning library (ML-lib) is a famous platform used for big data analysis, it includes several useful features for machine learning applications, involving regression, classification, and dimension reduction, as well as clustering and features extraction. In this contribution, we consider Apache Spark ML-lib as a computationally independent machine learning library, which is open-source, distributed, scalable, and platform. We have evaluated and compared several ML algorithms to analyze the platform’s qualities, compared Apache Spark ML-lib against Rapid Miner and Sklearn, which are two additional Big data and machine learning processing platforms. Logistic Classifier (LC), Decision Tree Classifier (DTc), Random Forest Classifier (RFC), and Gradient Boosted Tree Classifier (GBTC) are four machine learning algorithms that are compared across platforms. In addition, we have tested general regression methods such as Linear Regressor (LR), Decision Tree Regressor (DTR), Random Forest Regressor (RFR), and Gradient Boosted Tree Regressor (GBTR) on SUSY and Higgs datasets. Moreover, We have evaluated the unsupervised learning methods like K-means and Gaussian Mixer Models on the data set SUSY and Hepmass to determine the robustness of PySpark, in comparison with the classification and regression models. We used ”SUSY,” ”HIGGS,” ”BANK,” and ”HEPMASS” dataset from the UCI data repository. We also talk about recent developments in the research into Big Data machines and provide future research directions.
AB - Artificial intelligence, specifically machine learning, has been applied in a variety of methods by the research group to transform several data sources into valuable facts and understanding, allowing for superior pattern identification skills. Machine learning algorithms on huge and complicated data sets, computationally expensive on the other hand, processing requires hardware and logical resources, such as space, CPU, and memory. As the amount of data created daily reaches quintillion bytes, A complex big data infrastructure becomes more and more relevant. Apache Spark Machine learning library (ML-lib) is a famous platform used for big data analysis, it includes several useful features for machine learning applications, involving regression, classification, and dimension reduction, as well as clustering and features extraction. In this contribution, we consider Apache Spark ML-lib as a computationally independent machine learning library, which is open-source, distributed, scalable, and platform. We have evaluated and compared several ML algorithms to analyze the platform’s qualities, compared Apache Spark ML-lib against Rapid Miner and Sklearn, which are two additional Big data and machine learning processing platforms. Logistic Classifier (LC), Decision Tree Classifier (DTc), Random Forest Classifier (RFC), and Gradient Boosted Tree Classifier (GBTC) are four machine learning algorithms that are compared across platforms. In addition, we have tested general regression methods such as Linear Regressor (LR), Decision Tree Regressor (DTR), Random Forest Regressor (RFR), and Gradient Boosted Tree Regressor (GBTR) on SUSY and Higgs datasets. Moreover, We have evaluated the unsupervised learning methods like K-means and Gaussian Mixer Models on the data set SUSY and Hepmass to determine the robustness of PySpark, in comparison with the classification and regression models. We used ”SUSY,” ”HIGGS,” ”BANK,” and ”HEPMASS” dataset from the UCI data repository. We also talk about recent developments in the research into Big Data machines and provide future research directions.
KW - Big Data
KW - Machine Learning
KW - Predictive analytic
KW - PySpark Ml-lib
KW - Rapid Miner
KW - SK-Learn
UR - http://www.scopus.com/inward/record.url?scp=85136735631&partnerID=8YFLogxK
U2 - 10.1007/s11277-021-09362-7
DO - 10.1007/s11277-021-09362-7
M3 - Article
C2 - 36033548
AN - SCOPUS:85136735631
SN - 0929-6212
VL - 126
SP - 2403
EP - 2423
JO - Wireless Personal Communications
JF - Wireless Personal Communications
IS - 3
ER -