TY - JOUR
T1 - Peptide YY regulates bone turnover in rodents
AU - Wortley, Katherine E
AU - Garcia, Karen
AU - Okamoto, Haruka
AU - Thabet, Karen
AU - Anderson, Keith D
AU - Shen, Victor
AU - Herman, Jim P
AU - Valenzuela, David M
AU - Yancopoulos, George D
AU - Tschop, Matthias H
AU - Murphy, Andrew J
AU - Sleeman, Mark W
PY - 2007
Y1 - 2007
N2 - BACKGROUND AIMS: Peptide YY (PYY) and pancreatic polypeptide (PPY) are members of the neuropeptide Y peptide family. The neuropeptide Y receptor signaling pathway has been implicated in a number of physiologic processes, including the regulation of energy balance and bone mass. To investigate the contribution of endogenous PYY and PPY to these processes, we generated both Pyy- and Ppy-deficient mice. METHODS: Pyy(-/-) and Ppy(-/-) mice and their respective wild-type littermates were studied from 8 weeks to 9 months of age. Food intake, metabolic parameters, and locomotor activity were monitored using indirect calorimetry. Body composition and bone parameters were analyzed using dual energy x-ray absorptiometry, histomorphometry, and vertebral compression testing. RESULTS: Studies in these mice showed an osteopenic phenotype specific to the Pyy-deficient line, which included a reduction in trabecular bone mass and a functional deficit in bone strength. Furthermore, female Pyy(-/-) mice showed a greater sensitivity to ovariectomy-induced bone loss compared with wild-type littermates. No food intake or metabolic phenotype was apparent in male or female Pyy(-/-) mice on standard chow. However, female Pyy(-/-) mice on a high-fat diet showed a greater propensity to gain body weight and adiposity. No metabolic or osteopenic phenotype was observed in Ppy-deficient mice. CONCLUSIONS: These results indicate that endogenous PYY plays a critical role in regulating bone mass. In comparison, its role in regulating body weight is minor and is confined to situations of high-fat feeding.
AB - BACKGROUND AIMS: Peptide YY (PYY) and pancreatic polypeptide (PPY) are members of the neuropeptide Y peptide family. The neuropeptide Y receptor signaling pathway has been implicated in a number of physiologic processes, including the regulation of energy balance and bone mass. To investigate the contribution of endogenous PYY and PPY to these processes, we generated both Pyy- and Ppy-deficient mice. METHODS: Pyy(-/-) and Ppy(-/-) mice and their respective wild-type littermates were studied from 8 weeks to 9 months of age. Food intake, metabolic parameters, and locomotor activity were monitored using indirect calorimetry. Body composition and bone parameters were analyzed using dual energy x-ray absorptiometry, histomorphometry, and vertebral compression testing. RESULTS: Studies in these mice showed an osteopenic phenotype specific to the Pyy-deficient line, which included a reduction in trabecular bone mass and a functional deficit in bone strength. Furthermore, female Pyy(-/-) mice showed a greater sensitivity to ovariectomy-induced bone loss compared with wild-type littermates. No food intake or metabolic phenotype was apparent in male or female Pyy(-/-) mice on standard chow. However, female Pyy(-/-) mice on a high-fat diet showed a greater propensity to gain body weight and adiposity. No metabolic or osteopenic phenotype was observed in Ppy-deficient mice. CONCLUSIONS: These results indicate that endogenous PYY plays a critical role in regulating bone mass. In comparison, its role in regulating body weight is minor and is confined to situations of high-fat feeding.
UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17920065
U2 - 10.1053/j.gastro.2007.08.024
DO - 10.1053/j.gastro.2007.08.024
M3 - Article
SN - 0016-5085
VL - 133
SP - 1534
EP - 1543
JO - Gastroenterology
JF - Gastroenterology
IS - 5
ER -