Peak modeling approach to accurate assignment of first-dimension retention times in comprehensive two-dimensional chromatography

Jacqui Adcock, Michael Adams, Blagoj Mitrevski, Philip John Marriott

Research output: Contribution to journalArticleResearchpeer-review

31 Citations (Scopus)

Abstract

Modeling of first-dimension retention of peaks based on modulation phase and period allows reliable prediction of the modulated peak distributions generated in the comprehensive two-dimensional chromatography experiment. By application of the inverse process, it is also possible to use the profile of the modulated peaks (their heights or areas) to predict the shape and parameters of the original input chromatographic band (retention time, standard deviation, area) for the primary column dimension. This allows an accurate derivation of the first-dimension retention time (RSD 0.02 ) which is equal to that for the non-modulated experiment, rather than relying upon the retention time of the major modulated peak generated by the modulation process (RSD 0.16 ). The latter metric can produce a retention time that differs by at least the modulation period employed in the experiment, which displays a discontinuity in the retention time vs modulation phase plot at the point of the 180 degrees out-of-phase modulation. In contrast, the new procedure proposed here gives a result that is essentially independent of modulation phase and period). This permits an accurate value to be assigned to the first-dimension retention. The proposed metric accounts for the time on the second-dimension, the phase of the distribution, and the hold-up time that the sampled solute is retained in the modulating interface. The approach may also be based on the largest three modulated peaks, rather than all modulated peaks. This simplifies the task of assigning the retention time with little loss of precision in band standard deviation or retention time, provided that these peaks are not all overloaded in the first or second dimension.
Original languageEnglish
Pages (from-to)6797 - 6804
Number of pages8
JournalAnalytical Chemistry
Volume81
Issue number16
DOIs
Publication statusPublished - 2009
Externally publishedYes

Cite this