Particle scale investigation of flow and mixing of wet particles in rotating drums

Peiyuan Liu, Runyu Yang, Aibing Yu

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

4 Citations (Scopus)


Granular flow in rotating drums exhibits complex phenomena which are further complicated by the presence of liquids. This paper reviews our recent work on flow of wet particles in rotating drums based on the discrete element method (DEM) simulations. The DEM model was validated by comparing the simulation results with experimental measurements. Particle flow at quasi-static and dynamic states was investigated. In the quasi-static state with the drum rotating at low speeds, wet particle bed failed through avalanche and slow structural change was identified prior to the avalanches. In the dynamic state, flow transited from continuous to avalanche flow with increasing liquid surface tension and a plug flow was developed on the bed surface. Particle mixing in both transverse and axial directions was studied. While cohesion in general reduced transverse mixing, enhanced mixing of wet particles was also observed, which was explained by a theory based on particle circulation period. On the other hand, the axial mixing was well described by Fick s law of diffusion and particle diffusivity decreased with increasing cohesion. A correlation was observed between particle diffusivity and granular temperature.
Original languageEnglish
Title of host publicationPowders and Grains 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media
EditorsAibing Yu, Kejun Dong, Runyu Wang, Stefan Luding
Place of PublicationMelville NY USA
PublisherAmerican Institute of Physics
Pages963 - 966
Number of pages4
ISBN (Print)9780735411661
Publication statusPublished - 2013
Externally publishedYes
EventPowders and Grains 2013 - Sydney, Australia
Duration: 8 Jul 201312 Jul 2013
Conference number: 7th


ConferencePowders and Grains 2013
Internet address

Cite this