Particle collection using vibrating bubbles

H.V. Phan, M. Sesen, T. Alan, A. Neild

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearch


In this study, we present a microfluidics channel capable of collecting and focusing particles by the use of a vibrating air/water interface. The device contains a sidewall cylindrical void that traps air to create a microbubble surface, a modified version of the commonly used lateral cavity acoustic transducer (LCAT). By employing a relatively narrow rectangular channel (50 μm wide), we show that particles can be trapped and released into a narrow region. The collection process is described through an analysis of the transient state of the vortex. Additionally, it is found that the focusing efficiency, i.e. the width of focusing region, depends on the particles diameter and the excitation amplitude. 6.60 μm particles can easily be made to form a single line along the channel wall opposite the bubble under suitable conditions. For 2.01 μm particles, the focussing can be to a region of one third of the channel width. The focusing width grows with decreasing excitation amplitude, down to a certain voltage beyond which the vortices are too weak to induce any streaming.

Original languageEnglish
Title of host publicationProceedings of the 19th Australasian Fluid Mechanics Conference, AFMC 2014
Subtitle of host publicationMelbourne, Australia; 8-11 December 2014
PublisherRMIT University
Number of pages4
ISBN (Electronic)9780646596952
Publication statusPublished - 2014
EventAustralasian Fluid Mechanics Conference 2014 - Melbourne, Australia
Duration: 8 Dec 201411 Dec 2014
Conference number: 19th


ConferenceAustralasian Fluid Mechanics Conference 2014
Abbreviated titleAFMC 2014
Internet address

Cite this