TY - JOUR
T1 - Paramedic literature search filters
T2 - Optimised for clinicians and academics
AU - Olaussen, Alexander
AU - Semple, William
AU - Oteir, Alaa
AU - Todd, Paula
AU - Williams, Brett
PY - 2017/10/11
Y1 - 2017/10/11
N2 - Background: Search filters aid clinicians and academics to accurately locate literature. Despite this, there is no search filter or Medical Subject Headings (MeSH) term pertaining to paramedics. Therefore, the aim of this study was to create two filters to meet to different needs of paramedic clinicians and academics. Methods: We created a gold standard from a reference set, which we measured against single terms and search filters. The words and phrases used stemmed from selective exclusion of terms from the previously published Prehospital Search Filter 2.0 as well as a Delphi session with an expert panel of paramedic researchers. Independent authors deemed articles paramedic-relevant or not following an agreed definition. We measured sensitivity, specificity, accuracy and number needed to read (NNR). Results: We located 2102 articles of which 431 (20.5%) related to paramedics. The performance of single terms was on average of high specificity (97.1% (Standard Deviation 7.4%), but of poor sensitivity (12.0%, SD 18.7%). The NNR ranged from 1 to 8.6. The sensitivity-maximising search filter yielded 98.4% sensitivity, with a specificity of 74.3% and a NNR of 2. The specificity-maximising filter achieved 88.3% in specificity, which only lowered the sensitivity to 94.7%, and thus a NNR of 1.48. Conclusions: We have created the first two paramedic specific search filters, one optimised for sensitivity and one optimised for specificity. The sensitivity-maximising search filter yielded 98.4% sensitivity, and a NNR of 2. The specificity-maximising filter achieved 88.3% in specificity, which only lowered the sensitivity to 94.7%, and a NNR of 1.48. A paramedic MeSH term is needed.
AB - Background: Search filters aid clinicians and academics to accurately locate literature. Despite this, there is no search filter or Medical Subject Headings (MeSH) term pertaining to paramedics. Therefore, the aim of this study was to create two filters to meet to different needs of paramedic clinicians and academics. Methods: We created a gold standard from a reference set, which we measured against single terms and search filters. The words and phrases used stemmed from selective exclusion of terms from the previously published Prehospital Search Filter 2.0 as well as a Delphi session with an expert panel of paramedic researchers. Independent authors deemed articles paramedic-relevant or not following an agreed definition. We measured sensitivity, specificity, accuracy and number needed to read (NNR). Results: We located 2102 articles of which 431 (20.5%) related to paramedics. The performance of single terms was on average of high specificity (97.1% (Standard Deviation 7.4%), but of poor sensitivity (12.0%, SD 18.7%). The NNR ranged from 1 to 8.6. The sensitivity-maximising search filter yielded 98.4% sensitivity, with a specificity of 74.3% and a NNR of 2. The specificity-maximising filter achieved 88.3% in specificity, which only lowered the sensitivity to 94.7%, and thus a NNR of 1.48. Conclusions: We have created the first two paramedic specific search filters, one optimised for sensitivity and one optimised for specificity. The sensitivity-maximising search filter yielded 98.4% sensitivity, and a NNR of 2. The specificity-maximising filter achieved 88.3% in specificity, which only lowered the sensitivity to 94.7%, and a NNR of 1.48. A paramedic MeSH term is needed.
KW - Paramedic
KW - Search filter
UR - http://www.scopus.com/inward/record.url?scp=85031014968&partnerID=8YFLogxK
U2 - 10.1186/s12911-017-0544-z
DO - 10.1186/s12911-017-0544-z
M3 - Article
AN - SCOPUS:85031014968
SN - 1472-6947
VL - 17
JO - BMC Medical Informatics and Decision Making
JF - BMC Medical Informatics and Decision Making
IS - 1
M1 - 146
ER -