Parallelized gene cluster editing illuminates mechanisms of epoxyketone proteasome inhibitor biosynthesis

Chuan Huang, Daniel Zabala, Emmanuel L.C. De Los Santos, Lijiang Song, Christophe Corre, Lona M. Alkhalaf, Gregory L. Challis

Research output: Contribution to journalArticleResearchpeer-review

4 Citations (Scopus)

Abstract

Advances in DNA sequencing technology and bioinformatics have revealed the enormous potential of microbes to produce structurally complex specialized metabolites with diverse uses in medicine and agriculture. However, these molecules typically require structural modification to optimize them for application, which can be difficult using synthetic chemistry. Bioengineering offers a complementary approach to structural modification but is often hampered by genetic intractability and requires a thorough understanding of biosynthetic gene function. Expression of specialized metabolite biosynthetic gene clusters (BGCs) in heterologous hosts can surmount these problems. However, current approaches to BGC cloning and manipulation are inefficient, lack fidelity, and can be prohibitively expensive. Here, we report a yeast-based platform that exploits transformation-associated recombination (TAR) for high efficiency capture and parallelized manipulation of BGCs. As a proof of concept, we clone, heterologously express and genetically analyze BGCs for the structurally related nonribosomal peptides eponemycin and TMC-86A, clarifying remaining ambiguities in the biosynthesis of these important proteasome inhibitors. Our results show that the eponemycin BGC also directs the production of TMC-86A and reveal contrasting mechanisms for initiating the assembly of these two metabolites. Moreover, our data shed light on the mechanisms for biosynthesis and incorporation of 4,5-dehydro-l-leucine (dhL), an unusual nonproteinogenic amino acid incorporated into both TMC-86A and eponemycin.

Original languageEnglish
Pages (from-to)1488-1499
Number of pages12
JournalNucleic Acids Research
Volume51
Issue number3
DOIs
Publication statusPublished - 22 Feb 2023

Cite this