p-groups of maximal class

Periodic structures in the graph associated with p-groups of maximal class

Research output: Book/ReportBookResearch

Abstract

The classification of finite p-groups up to isomorphism is an intricate problem in group theory. In particular, a classification by order seems to be hopeless in general. In 1980, Leedham-Green and Newman suggested to classify p-groups by coclass. This has led to a new research area which delivered a deep insight into the structure of p-groups. New approaches and results concerning a classification by coclass have been developed since 1999, and it is known that the 2-groups of fixed coclass can be classified. A fundamental tool in this approach is the investigation of the coclass graph associated with these groups. For odd primes, a similar classification is still open. As an important special case, the author Heiko Dietrich investigates the p-groups of coclass 1, that is, the p-groups of maximal class. These are the p-groups of order p to the power of n with nilpotency class n-1. He gives a survey on the known structure of these groups and he proved two types of periodic patterns in the associated coclass graph. These patterns are reflected in the structure of the groups and the achieved results strongly support the conjecture that the p-groups of maximal class can be classified.
Original languageEnglish
PublisherSudwestdeutscher Verlag fur Hochschulschriften AG
Number of pages132
ISBN (Print)9783838110059
Publication statusPublished - 2009

Cite this

@book{08a22da3671242198509375bbf8d97af,
title = "p-groups of maximal class: Periodic structures in the graph associated with p-groups of maximal class",
abstract = "The classification of finite p-groups up to isomorphism is an intricate problem in group theory. In particular, a classification by order seems to be hopeless in general. In 1980, Leedham-Green and Newman suggested to classify p-groups by coclass. This has led to a new research area which delivered a deep insight into the structure of p-groups. New approaches and results concerning a classification by coclass have been developed since 1999, and it is known that the 2-groups of fixed coclass can be classified. A fundamental tool in this approach is the investigation of the coclass graph associated with these groups. For odd primes, a similar classification is still open. As an important special case, the author Heiko Dietrich investigates the p-groups of coclass 1, that is, the p-groups of maximal class. These are the p-groups of order p to the power of n with nilpotency class n-1. He gives a survey on the known structure of these groups and he proved two types of periodic patterns in the associated coclass graph. These patterns are reflected in the structure of the groups and the achieved results strongly support the conjecture that the p-groups of maximal class can be classified.",
author = "Heiko Dietrich",
year = "2009",
language = "English",
isbn = "9783838110059",
publisher = "Sudwestdeutscher Verlag fur Hochschulschriften AG",

}

p-groups of maximal class : Periodic structures in the graph associated with p-groups of maximal class. / Dietrich, Heiko.

Sudwestdeutscher Verlag fur Hochschulschriften AG, 2009. 132 p.

Research output: Book/ReportBookResearch

TY - BOOK

T1 - p-groups of maximal class

T2 - Periodic structures in the graph associated with p-groups of maximal class

AU - Dietrich, Heiko

PY - 2009

Y1 - 2009

N2 - The classification of finite p-groups up to isomorphism is an intricate problem in group theory. In particular, a classification by order seems to be hopeless in general. In 1980, Leedham-Green and Newman suggested to classify p-groups by coclass. This has led to a new research area which delivered a deep insight into the structure of p-groups. New approaches and results concerning a classification by coclass have been developed since 1999, and it is known that the 2-groups of fixed coclass can be classified. A fundamental tool in this approach is the investigation of the coclass graph associated with these groups. For odd primes, a similar classification is still open. As an important special case, the author Heiko Dietrich investigates the p-groups of coclass 1, that is, the p-groups of maximal class. These are the p-groups of order p to the power of n with nilpotency class n-1. He gives a survey on the known structure of these groups and he proved two types of periodic patterns in the associated coclass graph. These patterns are reflected in the structure of the groups and the achieved results strongly support the conjecture that the p-groups of maximal class can be classified.

AB - The classification of finite p-groups up to isomorphism is an intricate problem in group theory. In particular, a classification by order seems to be hopeless in general. In 1980, Leedham-Green and Newman suggested to classify p-groups by coclass. This has led to a new research area which delivered a deep insight into the structure of p-groups. New approaches and results concerning a classification by coclass have been developed since 1999, and it is known that the 2-groups of fixed coclass can be classified. A fundamental tool in this approach is the investigation of the coclass graph associated with these groups. For odd primes, a similar classification is still open. As an important special case, the author Heiko Dietrich investigates the p-groups of coclass 1, that is, the p-groups of maximal class. These are the p-groups of order p to the power of n with nilpotency class n-1. He gives a survey on the known structure of these groups and he proved two types of periodic patterns in the associated coclass graph. These patterns are reflected in the structure of the groups and the achieved results strongly support the conjecture that the p-groups of maximal class can be classified.

M3 - Book

SN - 9783838110059

BT - p-groups of maximal class

PB - Sudwestdeutscher Verlag fur Hochschulschriften AG

ER -