Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells

Susan K. Nilsson, Hayley M. Johnston, Genevieve A. Whitty, Brenda Williams, Ryan J. Webb, David T. Denhardt, Ivan Bertoncello, Linda J. Bendall, Paul J. Simmons, David N. Haylock

Research output: Contribution to journalArticleResearchpeer-review

552 Citations (Scopus)


Although recent data suggests that osteoblasts play a key role within the hematopoietic stem cell (HSC) niche, the mechanisms underpinning this remain to be fully defined. The studies described herein examine the role in hematopoiesis of Osteopontin (Opn), a multidomain, phosphorylated glycoprotein, synthesized by osteoblasts, with well-described roles in cell adhesion, inflammatory responses, angiogenesis, and tumor metastasis. We demonstrate a previously unrecognized critical role for Opn in regulation of the physical location and proliferation of HSCs. Within marrow, Opn expression is restricted to the endosteal bone surface and contributes to HSC transmarrow migration toward the endosteal region, as demonstrated by the markedly aberrant distribution of HSCs in Opn-/- mice after transplantation. Primitive hematopoietic cells demonstrate specific adhesion to Opn in vitro via β1 integrin. Furthermore, exogenous Opn potently suppresses the proliferation of primitive HPCs in vitro, the physiologic relevance of which is demonstrated by the markedly enhanced cycling of HSC in Opn-/- mice. These data therefore provide strong evidence that Opn is an important component of the HSC niche which participates in HSC location and as a physiologic-negative regulator of HSC proliferation.

Original languageEnglish
Pages (from-to)1232-1239
Number of pages8
Issue number4
Publication statusPublished - 15 Aug 2005
Externally publishedYes

Cite this