Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor

Vimesh A Avlani, Christopher J Langmead, Elizabeth Guida, Martyn D Wood, Benjamin G Tehan, Hugh J Herdon, Jeannette M Watson, Patrick Sexton, Arthur Christopoulos

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Recent years have witnessed the discovery of novel selective agonists of the M(1) muscarinic acetylcholine (ACh) receptor (mAChR). One mechanism invoked to account for the selectivity of such agents is that they interact with allosteric sites. We investigated the molecular pharmacology of two such agonists, 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone (77-LH-28-1) and 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine hydrogen chloride (AC-42), at the wild-type M(1) mAChR and three mutant M(1) mAChRs. Both agonists inhibited the binding of the orthosteric antagonist [(3)H]N-methyl scopolamine ([(3)H]NMS) in a manner consistent with orthosteric competition or high negative cooperativity. Functional interaction studies between 77-LH-28-1 and ACh also indicated a competitive mechanism. Dissociation kinetics assays revealed that the agonists could bind allosterically when the orthosteric site was prelabeled with [(3)H]NMS and that 77-LH-28-1 competed with the prototypical allosteric modulator heptane-1,7-bis-[dimethyl-3 -phthalimidopropyl]-ammonium bromide under these conditions. Mutation of the key orthosteric site residues Y(381)A (transmembrane helix 6) and W(101)A (transmembrane helix 3) reduced the affinity of prototypical orthosteric agonists but increased the affinity of the novel agonists. Divergent effects were also noted on agonist signaling efficacies at these mutants. We identified a novel mutation, F(77)I (transmembrane helix 2), which selectively reduced the efficacy of the novel agonists in mediating intracellular Ca(2+) elevation and phosphorylation of extracellular signal regulated kinase 1/2. Molecular modeling suggested a possible bitopic binding mode, whereby the agonists extend down into the orthosteric site as well as up toward extracellular receptor regions associated with an allosteric site. It is possible that this bitopic mode may explain the pharmacology of other selective mAChR agonists.
Original languageEnglish
Pages (from-to)94 - 104
Number of pages11
JournalMolecular Pharmacology
Volume78
Issue number1
Publication statusPublished - 2010

Cite this

Avlani, Vimesh A ; Langmead, Christopher J ; Guida, Elizabeth ; Wood, Martyn D ; Tehan, Benjamin G ; Herdon, Hugh J ; Watson, Jeannette M ; Sexton, Patrick ; Christopoulos, Arthur. / Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. In: Molecular Pharmacology. 2010 ; Vol. 78, No. 1. pp. 94 - 104.
@article{8adcaf4ac32b41899af7148606d84c35,
title = "Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor",
abstract = "Recent years have witnessed the discovery of novel selective agonists of the M(1) muscarinic acetylcholine (ACh) receptor (mAChR). One mechanism invoked to account for the selectivity of such agents is that they interact with allosteric sites. We investigated the molecular pharmacology of two such agonists, 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone (77-LH-28-1) and 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine hydrogen chloride (AC-42), at the wild-type M(1) mAChR and three mutant M(1) mAChRs. Both agonists inhibited the binding of the orthosteric antagonist [(3)H]N-methyl scopolamine ([(3)H]NMS) in a manner consistent with orthosteric competition or high negative cooperativity. Functional interaction studies between 77-LH-28-1 and ACh also indicated a competitive mechanism. Dissociation kinetics assays revealed that the agonists could bind allosterically when the orthosteric site was prelabeled with [(3)H]NMS and that 77-LH-28-1 competed with the prototypical allosteric modulator heptane-1,7-bis-[dimethyl-3 -phthalimidopropyl]-ammonium bromide under these conditions. Mutation of the key orthosteric site residues Y(381)A (transmembrane helix 6) and W(101)A (transmembrane helix 3) reduced the affinity of prototypical orthosteric agonists but increased the affinity of the novel agonists. Divergent effects were also noted on agonist signaling efficacies at these mutants. We identified a novel mutation, F(77)I (transmembrane helix 2), which selectively reduced the efficacy of the novel agonists in mediating intracellular Ca(2+) elevation and phosphorylation of extracellular signal regulated kinase 1/2. Molecular modeling suggested a possible bitopic binding mode, whereby the agonists extend down into the orthosteric site as well as up toward extracellular receptor regions associated with an allosteric site. It is possible that this bitopic mode may explain the pharmacology of other selective mAChR agonists.",
author = "Avlani, {Vimesh A} and Langmead, {Christopher J} and Elizabeth Guida and Wood, {Martyn D} and Tehan, {Benjamin G} and Herdon, {Hugh J} and Watson, {Jeannette M} and Patrick Sexton and Arthur Christopoulos",
year = "2010",
language = "English",
volume = "78",
pages = "94 -- 104",
journal = "Molecular Pharmacology",
issn = "1521-0111",
publisher = "ACS Books",
number = "1",

}

Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. / Avlani, Vimesh A; Langmead, Christopher J; Guida, Elizabeth; Wood, Martyn D; Tehan, Benjamin G; Herdon, Hugh J; Watson, Jeannette M; Sexton, Patrick; Christopoulos, Arthur.

In: Molecular Pharmacology, Vol. 78, No. 1, 2010, p. 94 - 104.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor

AU - Avlani, Vimesh A

AU - Langmead, Christopher J

AU - Guida, Elizabeth

AU - Wood, Martyn D

AU - Tehan, Benjamin G

AU - Herdon, Hugh J

AU - Watson, Jeannette M

AU - Sexton, Patrick

AU - Christopoulos, Arthur

PY - 2010

Y1 - 2010

N2 - Recent years have witnessed the discovery of novel selective agonists of the M(1) muscarinic acetylcholine (ACh) receptor (mAChR). One mechanism invoked to account for the selectivity of such agents is that they interact with allosteric sites. We investigated the molecular pharmacology of two such agonists, 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone (77-LH-28-1) and 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine hydrogen chloride (AC-42), at the wild-type M(1) mAChR and three mutant M(1) mAChRs. Both agonists inhibited the binding of the orthosteric antagonist [(3)H]N-methyl scopolamine ([(3)H]NMS) in a manner consistent with orthosteric competition or high negative cooperativity. Functional interaction studies between 77-LH-28-1 and ACh also indicated a competitive mechanism. Dissociation kinetics assays revealed that the agonists could bind allosterically when the orthosteric site was prelabeled with [(3)H]NMS and that 77-LH-28-1 competed with the prototypical allosteric modulator heptane-1,7-bis-[dimethyl-3 -phthalimidopropyl]-ammonium bromide under these conditions. Mutation of the key orthosteric site residues Y(381)A (transmembrane helix 6) and W(101)A (transmembrane helix 3) reduced the affinity of prototypical orthosteric agonists but increased the affinity of the novel agonists. Divergent effects were also noted on agonist signaling efficacies at these mutants. We identified a novel mutation, F(77)I (transmembrane helix 2), which selectively reduced the efficacy of the novel agonists in mediating intracellular Ca(2+) elevation and phosphorylation of extracellular signal regulated kinase 1/2. Molecular modeling suggested a possible bitopic binding mode, whereby the agonists extend down into the orthosteric site as well as up toward extracellular receptor regions associated with an allosteric site. It is possible that this bitopic mode may explain the pharmacology of other selective mAChR agonists.

AB - Recent years have witnessed the discovery of novel selective agonists of the M(1) muscarinic acetylcholine (ACh) receptor (mAChR). One mechanism invoked to account for the selectivity of such agents is that they interact with allosteric sites. We investigated the molecular pharmacology of two such agonists, 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone (77-LH-28-1) and 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine hydrogen chloride (AC-42), at the wild-type M(1) mAChR and three mutant M(1) mAChRs. Both agonists inhibited the binding of the orthosteric antagonist [(3)H]N-methyl scopolamine ([(3)H]NMS) in a manner consistent with orthosteric competition or high negative cooperativity. Functional interaction studies between 77-LH-28-1 and ACh also indicated a competitive mechanism. Dissociation kinetics assays revealed that the agonists could bind allosterically when the orthosteric site was prelabeled with [(3)H]NMS and that 77-LH-28-1 competed with the prototypical allosteric modulator heptane-1,7-bis-[dimethyl-3 -phthalimidopropyl]-ammonium bromide under these conditions. Mutation of the key orthosteric site residues Y(381)A (transmembrane helix 6) and W(101)A (transmembrane helix 3) reduced the affinity of prototypical orthosteric agonists but increased the affinity of the novel agonists. Divergent effects were also noted on agonist signaling efficacies at these mutants. We identified a novel mutation, F(77)I (transmembrane helix 2), which selectively reduced the efficacy of the novel agonists in mediating intracellular Ca(2+) elevation and phosphorylation of extracellular signal regulated kinase 1/2. Molecular modeling suggested a possible bitopic binding mode, whereby the agonists extend down into the orthosteric site as well as up toward extracellular receptor regions associated with an allosteric site. It is possible that this bitopic mode may explain the pharmacology of other selective mAChR agonists.

UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20413650

M3 - Article

VL - 78

SP - 94

EP - 104

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 1521-0111

IS - 1

ER -