Origin of the Y chromosome influences intrarenal vascular responsiveness to angiotensin I and angiotensin (1-7) in stroke-prone spontaneously hypertensive rats

Amanda K. Sampson, Karen L. Andrews, Delyth Graham, Martin W. McBride, Geoffrey A. Head, Merlin C. Thomas, Jaye P F Chin-Dusting, Anna F. Dominiczak, Garry L. Jennings

Research output: Contribution to journalArticleResearchpeer-review

10 Citations (Scopus)


The lineage of the Y chromosome accounts for up to 15 to 20 mm Hg in arterial pressure. Genes located on the Y chromosome from the spontaneously hypertensive rat (SHR) are associated with the renin-angiotensin system. Given the important role of the renin-angiotensin system in the renal regulation of fluid homeostasis and arterial pressure, we hypothesized that the origin of the Y chromosome influences arterial pressure via interaction between the intrarenal vasculature and the renin-angiotensin system. Sixteen-week-old normotensive rats (Wistar Kyoto [WKY]), spontaneously hypertensive stroke-prone rat (SHRSP), and 2 reciprocal Y consomic rat strains, 1 comprising the WKY autosomes and X chromosome with the Y chromosome from the hypertensive rat strain (WKY.SPGlaY) and vice versa (SP.WKYGlaY), were examined. SP.WKYGlaY had lower systolic blood pressure than SHRSP (195±5 versus 227±8 mm Hg; P<0.03), whereas WKY.SPGlaY had higher systolic blood pressure compared with WKY (157±3 versus 148±3 mm Hg; P<0.05), measured by radiotelemetry. Compared with WKY rats, SHRSP had higher plasma angiotensin(1-7) (Ang (1-7)):Ang II ratio (WKY: 0.13±0.01 versus SHRSP: 1.33±0.4; P<0.005), greater angiotensin II receptor type 2 and Mas receptor mRNA expression, and a blunted renal constrictor response to intrarenal Ang I and Ang(1-7) infusions. Introgression of the normotensive Y chromosome into the SHRSP background (SP.WKYGlaY) restored responses in the SHRSP to WKY levels, evidenced by a reduction in plasma Ang(1-7):Ang II ratio (SP.WKYGlaY: 0.24±0.02; P<0.01), angiotensin II receptor type 2, and Mas receptor mRNA expression and an increased vasoconstrictor response to intrarenal Ang I and Ang(1-7) infusion. This study demonstrates that the origin of the Y chromosome significantly impacts the renal vascular responsiveness and therefore may influence the long-term renal regulation of blood pressure.

Original languageEnglish
Pages (from-to)1376-1383
Number of pages8
Issue number6
Publication statusPublished - 2014
Externally publishedYes


  • Gene expression
  • Hypertension
  • Inbred SHR
  • Rats
  • Renal circulation
  • Renin-angiotensin system

Cite this