Origin of dark-channel X-ray fluorescence from transition-metal ions in water

Robert Seidel, Samira Ghadimi, Kathrin M. Lange, Sébastien Bonhommeau, Mikhail A. Soldatov, Ronny Golnak, Alexander Kothe, René Könnecke, Alexander Soldatov, Stephan Thürmer, Bernd Winter, Emad F. Aziz

Research output: Contribution to journalArticleResearchpeer-review

29 Citations (Scopus)


The nonradiative dark channels in the L-edge fluorescence spectra from transition-metal aqueous solution identify the ultrafast charge-transfer processes playing an important role in many biological and chemical systems. Yet, the exact origin of such spectral dips with respect to the X-ray transmission spectrum has remained unclear. In the present study we explore the nature of the underlying decay mechanism of 2p core-excited Co 2+ in water by probing the nonradiative Auger-type electron emission channel using photoelectron spectroscopy from a liquid microjet. Our measurements demonstrate unequivocally that metal-to-water charge transfer quenches fluorescence and will inevitably lead to a dip in the total-fluorescence-yield X-ray absorption spectrum. This is directly revealed from the resonant enhancement of valence signal intensity arising from the interference of two identical final states created by a direct and Auger-electron emission, respectively.

Original languageEnglish
Pages (from-to)1600-1605
Number of pages6
JournalJournal of the American Chemical Society
Issue number3
Publication statusPublished - 25 Jan 2012
Externally publishedYes

Cite this