Abstract
Let h > w > 0 be two fixed integers. Let H be a random hypergraph whose hyperedges are all of cardinality h. To w-orient a hyperedge, we assign exactly w of its vertices positive signs with respect to the hyperedge, and the rest negative signs. A (w,k)-orientation of H consists of a w-orientation of all hyperedges of H, such that each vertex receives at most k positive signs from its incident hyperedges. When k is large enough, we determine the threshold of the existence of a (w,k)-orientation of a random hypergraph. The (w,k)-orientation of hypergraphs is strongly related to a general version of the off-line load balancing problem. The graph case, when h = 2 and w = 1, was solved recently by Cain, Sanders and Wormald and independently by Fernholz and Ramachandran. This settled a conjecture of Karp and Saks.
Original language | English |
---|---|
Pages (from-to) | 774-824 |
Number of pages | 51 |
Journal | Combinatorics, Probability and Computing |
Volume | 24 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2015 |
Externally published | Yes |