Projects per year
Abstract
Distributional robustness is a promising framework for training deep learning models that are less vulnerable to adversarial examples and data distribution shifts. Previous works have mainly focused on exploiting distributional robustness in the data space. In this work, we explore an optimal transport-based distributional robustness framework in model spaces. Specifically, we examine a model distribution within a Wasserstein ball centered on a given model distribution that maximizes the loss. We have developed theories that enable us to learn the optimal robust center model distribution. Interestingly, our developed theories allow us to flexibly incorporate the concept of sharpness awareness into training, whether it's a single model, ensemble models, or Bayesian Neural Networks, by considering specific forms of the center model distribution. These forms include a Dirac delta distribution over a single model, a uniform distribution over several models, and a general Bayesian Neural Network. Furthermore, we demonstrate that Sharpness-Aware Minimization (SAM) is a specific case of our framework when using a Dirac delta distribution over a single model, while our framework can be seen as a probabilistic extension of SAM. To validate the effectiveness of our framework in the aforementioned settings, we conducted extensive experiments, and the results reveal remarkable improvements compared to the baselines.
Original language | English |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 36 (NeurIPS 2023) |
Editors | A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, S. Levine |
Place of Publication | San Diego CA USA |
Publisher | Neural Information Processing Systems (NIPS) |
Number of pages | 14 |
ISBN (Electronic) | 9781713899921 |
Publication status | Published - 2023 |
Event | Advances in Neural Information Processing Systems 2023 - Ernest N. Morial Convention Center, New Orleans, United States of America Duration: 10 Dec 2023 → 16 Dec 2023 Conference number: 37th https://openreview.net/group?id=NeurIPS.cc/2023/Conference#tab-accept-oral https://neurips.cc/ (Website) https://papers.nips.cc/paper_files/paper/2023 (Proceedings) |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Publisher | Neural Information Processing Systems (NIPS) |
Volume | 36 |
ISSN (Print) | 1049-5258 |
Conference
Conference | Advances in Neural Information Processing Systems 2023 |
---|---|
Abbreviated title | NeurIPS 2023 |
Country/Territory | United States of America |
City | New Orleans |
Period | 10/12/23 → 16/12/23 |
Internet address |
Projects
- 1 Active
-
Exploiting Geometries of Learning for Fast, Adaptive and Robust AI
Phung, D. (Primary Chief Investigator (PCI)), Tafazzoli Harandi, M. (Chief Investigator (CI)), Hartley, R. I. (Chief Investigator (CI)), Le, T. (Chief Investigator (CI)) & Koniusz, P. (Partner Investigator (PI))
ARC - Australian Research Council
8/05/23 → 7/05/26
Project: Research