Abstract
We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed within a source distance of approximately 20 Mpc during the first and second observing runs of Advanced LIGO and Advanced Virgo. No significant gravitational-wave candidate was detected. We report the detection efficiencies as a function of the distance for waveforms derived from multidimensional numerical simulations and phenomenological extreme emission models. The sources with neutrino-driven explosions are detectable at the distances approaching 5 kpc, and for magnetorotationally driven explosions the distances are up to 54 kpc. However, waveforms for extreme emission models are detectable up to 28 Mpc. For the first time, the gravitational-wave data enabled us to exclude part of the parameter spaces of two extreme emission models with confidence up to 83%, limited by coincident data coverage. Besides, using ad hoc harmonic signals windowed with Gaussian envelopes, we constrained the gravitational-wave energy emitted during core collapse at the levels of 4.27×10-4 M·c2 and 1.28×10-1 M·c2 for emissions at 235 and 1304 Hz, respectively. These constraints are 2 orders of magnitude more stringent than previously derived in the corresponding analysis using initial LIGO, initial Virgo, and GEO 600 data.
Original language | English |
---|---|
Article number | 084002 |
Number of pages | 24 |
Journal | Physical Review D |
Volume | 101 |
Issue number | 8 |
DOIs | |
Publication status | Published - 15 Apr 2020 |
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. / The LIGO Scientific Collaboration; Virgo Collaboration; ASAS-SN Collaboration et al.
In: Physical Review D, Vol. 101, No. 8, 084002, 15.04.2020.Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abraham, S.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Allen, G.
AU - Allocca, A.
AU - Aloy, M. A.
AU - Altin, P. A.
AU - Amato, A.
AU - Anand, S.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Angelova, S. V.
AU - Antier, S.
AU - Appert, S.
AU - Arai, K.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arène, M.
AU - Arnaud, N.
AU - Aronson, S. M.
AU - Ascenzi, S.
AU - Ashton, G.
AU - Aston, S. M.
AU - Astone, P.
AU - Aubin, F.
AU - Aufmuth, P.
AU - Aultoneal, K.
AU - Austin, C.
AU - Avendano, V.
AU - Avila-Alvarez, A.
AU - Babak, S.
AU - Bacon, P.
AU - Badaracco, F.
AU - Bader, M. K.M.
AU - Bae, S.
AU - Baird, J.
AU - Baker, P. T.
AU - Baldaccini, F.
AU - Ballardin, G.
AU - Ballmer, S. W.
AU - Bals, A.
AU - Banagiri, S.
AU - Barayoga, J. C.
AU - Barbieri, C.
AU - Barclay, S. E.
AU - Barish, B. C.
AU - Barker, D.
AU - Barkett, K.
AU - Barnum, S.
AU - Barone, F.
AU - Barr, B.
AU - Barsotti, L.
AU - Barsuglia, M.
AU - Barta, D.
AU - Bartlett, J.
AU - Bartos, I.
AU - Bassiri, R.
AU - Basti, A.
AU - Bawaj, M.
AU - Bayley, J. C.
AU - Bazzan, M.
AU - Bécsy, B.
AU - Bejger, M.
AU - Belahcene, I.
AU - Bell, A. S.
AU - Beniwal, D.
AU - Benjamin, M. G.
AU - Bergmann, G.
AU - Bernuzzi, S.
AU - Berry, C. P.L.
AU - Bersanetti, D.
AU - Bertolini, A.
AU - Betzwieser, J.
AU - Bhandare, R.
AU - Bidler, J.
AU - Biggs, E.
AU - Bilenko, I. A.
AU - Bilgili, S. A.
AU - Billingsley, G.
AU - Birney, R.
AU - Birnholtz, O.
AU - Biscans, S.
AU - Bischi, M.
AU - Biscoveanu, S.
AU - Bisht, A.
AU - Bitossi, M.
AU - Bizouard, M. A.
AU - Blackburn, J. K.
AU - Blackman, J.
AU - Blair, C. D.
AU - Blair, D. G.
AU - Blair, R. M.
AU - Bloemen, S.
AU - Bobba, F.
AU - Bode, N.
AU - Boer, M.
AU - Boetzel, Y.
AU - Bogaert, G.
AU - Bondu, F.
AU - Bonnand, R.
AU - Booker, P.
AU - Boom, B. A.
AU - Bork, R.
AU - Boschi, V.
AU - Bose, S.
AU - Bossilkov, V.
AU - Bosveld, J.
AU - Bouffanais, Y.
AU - Bozzi, A.
AU - Bradaschia, C.
AU - Brady, P. R.
AU - Bramley, A.
AU - Branchesi, M.
AU - Brau, J. E.
AU - Breschi, M.
AU - Briant, T.
AU - Briggs, J. H.
AU - Brighenti, F.
AU - Brillet, A.
AU - Brinkmann, M.
AU - Brockill, P.
AU - Brooks, A. F.
AU - Brooks, J.
AU - Brown, D. D.
AU - Brunett, S.
AU - Buikema, A.
AU - Bulik, T.
AU - Bulten, H. J.
AU - Buonanno, A.
AU - Buskulic, D.
AU - Buy, C.
AU - Byer, R. L.
AU - Cabero, M.
AU - Cadonati, L.
AU - Cagnoli, G.
AU - Cahillane, C.
AU - Bustillo, J. Calderón
AU - Callister, T. A.
AU - Calloni, E.
AU - Camp, J. B.
AU - Campbell, W. A.
AU - Canepa, M.
AU - Cannon, K. C.
AU - Cao, H.
AU - Cao, J.
AU - Carapella, G.
AU - Carbognani, F.
AU - Caride, S.
AU - Carney, M. F.
AU - Carullo, G.
AU - Diaz, J. Casanueva
AU - Casentini, C.
AU - Caudill, S.
AU - Cavaglià, M.
AU - Cavalier, F.
AU - Cavalieri, R.
AU - Cella, G.
AU - Cerdá-Durán, P.
AU - Cesarini, E.
AU - Chaibi, O.
AU - Chakravarti, K.
AU - Chamberlin, S. J.
AU - Chan, M.
AU - Chao, S.
AU - Charlton, P.
AU - Chase, E. A.
AU - Chassande-Mottin, E.
AU - Chatterjee, D.
AU - Chaturvedi, M.
AU - Cheeseboro, B. D.
AU - Chen, H. Y.
AU - Chen, X.
AU - Chen, Y.
AU - Cheng, H. P.
AU - Cheong, C. K.
AU - Chia, H. Y.
AU - Chiadini, F.
AU - Chincarini, A.
AU - Chiummo, A.
AU - Cho, G.
AU - Cho, H. S.
AU - Cho, M.
AU - Christensen, N.
AU - Chu, Q.
AU - Chua, S.
AU - Chung, K. W.
AU - Chung, S.
AU - Ciani, G.
AU - Cieślar, M.
AU - Ciobanu, A. A.
AU - Ciolfi, R.
AU - Cipriano, F.
AU - Cirone, A.
AU - Clara, F.
AU - Clark, J. A.
AU - Clearwater, P.
AU - Cleva, F.
AU - Coccia, E.
AU - Cohadon, P. F.
AU - Cohen, D.
AU - Colleoni, M.
AU - Collette, C. G.
AU - Collins, C.
AU - Colpi, M.
AU - Cominsky, L. R.
AU - Constancio, M.
AU - Conti, L.
AU - Cooper, S. J.
AU - Corban, P.
AU - Corbitt, T. R.
AU - Cordero-Carrión, I.
AU - Corezzi, S.
AU - Corley, K. R.
AU - Cornish, N.
AU - Corre, D.
AU - Corsi, A.
AU - Cortese, S.
AU - Costa, C. A.
AU - Cotesta, R.
AU - Coughlin, M. W.
AU - Coughlin, S. B.
AU - Coulon, J. P.
AU - Countryman, S. T.
AU - Couvares, P.
AU - Covas, P. B.
AU - Vivanco, Francisco Hernandez
AU - Goncharov, B.
AU - Lasky, P. D.
AU - Levin, Y.
AU - Lin, F.
AU - Meadors, G. D.
AU - Sarin, N.
AU - Smith, R. J.E.
AU - Talbot, C.
AU - Thrane, E.
AU - Zhu, X. J.
AU - The LIGO Scientific Collaboration
AU - Virgo Collaboration
AU - ASAS-SN Collaboration
AU - The DLT40 Collaboration
AU - Easter, Paul J.
AU - Huebner, Moritz
AU - Payne, Ethan
PY - 2020/4/15
Y1 - 2020/4/15
N2 - We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed within a source distance of approximately 20 Mpc during the first and second observing runs of Advanced LIGO and Advanced Virgo. No significant gravitational-wave candidate was detected. We report the detection efficiencies as a function of the distance for waveforms derived from multidimensional numerical simulations and phenomenological extreme emission models. The sources with neutrino-driven explosions are detectable at the distances approaching 5 kpc, and for magnetorotationally driven explosions the distances are up to 54 kpc. However, waveforms for extreme emission models are detectable up to 28 Mpc. For the first time, the gravitational-wave data enabled us to exclude part of the parameter spaces of two extreme emission models with confidence up to 83%, limited by coincident data coverage. Besides, using ad hoc harmonic signals windowed with Gaussian envelopes, we constrained the gravitational-wave energy emitted during core collapse at the levels of 4.27×10-4 M·c2 and 1.28×10-1 M·c2 for emissions at 235 and 1304 Hz, respectively. These constraints are 2 orders of magnitude more stringent than previously derived in the corresponding analysis using initial LIGO, initial Virgo, and GEO 600 data.
AB - We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed within a source distance of approximately 20 Mpc during the first and second observing runs of Advanced LIGO and Advanced Virgo. No significant gravitational-wave candidate was detected. We report the detection efficiencies as a function of the distance for waveforms derived from multidimensional numerical simulations and phenomenological extreme emission models. The sources with neutrino-driven explosions are detectable at the distances approaching 5 kpc, and for magnetorotationally driven explosions the distances are up to 54 kpc. However, waveforms for extreme emission models are detectable up to 28 Mpc. For the first time, the gravitational-wave data enabled us to exclude part of the parameter spaces of two extreme emission models with confidence up to 83%, limited by coincident data coverage. Besides, using ad hoc harmonic signals windowed with Gaussian envelopes, we constrained the gravitational-wave energy emitted during core collapse at the levels of 4.27×10-4 M·c2 and 1.28×10-1 M·c2 for emissions at 235 and 1304 Hz, respectively. These constraints are 2 orders of magnitude more stringent than previously derived in the corresponding analysis using initial LIGO, initial Virgo, and GEO 600 data.
UR - http://www.scopus.com/inward/record.url?scp=85084593840&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.101.084002
DO - 10.1103/PhysRevD.101.084002
M3 - Article
AN - SCOPUS:85084593840
VL - 101
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 8
M1 - 084002
ER -