Ontogenetic Change in the Regional Distribution of Dehydroepiandrosterone-Synthesizing Enzyme and the Glucocorticoid Receptor in the Brain of the Spiny Mouse (Acomys cahirinus)

Tracey A. Quinn, Udani Ratnayake, Hayley Dickinson, Margie Castillo-Melendez, David W. Walker

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)

Abstract

The androgen dehydroepiandrosterone (DHEA) has trophic and anti-glucocorticoid actions on brain growth. The adrenal gland of the spiny mouse (Acomys cahirinus) synthesizes DHEA. The aim of this study was to determine whether the brain of this precocial species is also able to produce DHEA de novo during fetal, neonatal and adult life. The expression of P450c17 and cytochrome b5 (Cytb5), the enzyme and accessory protein responsible for the synthesis of DHEA, was determined in fetal, neonatal and adult brains by immunocytochemistry, and P450c17 bioactivity was determined by the conversion of pregnenolone to DHEA. Homogenates of fetal brain produced significantly more DHEA after 48 h in culture (22.46 ± 2.0 ng/mg tissue) than adult brain homogenates (5.04 ± 2.0 ng/mg tissue; p < 0.0001). P450c17 and Cytb5 were co-expressed in fetal neurons but predominantly in oligodendrocytes and white matter tracts in the adult brain. Because DHEA modulates glucocorticoids actions, the expression of the glucocorticoid receptor (GR) was also determined. In the brainstem, medulla, midbrain, and cerebellum, the predominant GR localization changed from neurons in the fetal brain to oligodendrocytes and white matter tracts in the adult brain. The change of expression of P450c17, Cytb5 and GR proteins with cell type, brain region and developmental age indicates that DHEA is an endogenous neurosteroid in this species that may have important trophic and stress-modifying actions during both prenatal and postnatal life.

Original languageEnglish
Pages (from-to)54-73
Number of pages20
JournalDevelopmental Neuroscience
Volume38
Issue number1
DOIs
Publication statusPublished - 1 Feb 2016

Keywords

  • Cytochrome b5
  • Cytochrome enzyme P450c17
  • Dehydroepiandrosterone
  • Glucocorticoid receptor
  • Neurons
  • Oligodendrocytes

Cite this