Online multi-target tracking using recurrent neural networks

Anton Milan, S. Hamid Rezatofighi, Anthony Dick, Ian Reid, Konrad Schindler

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

291 Citations (Scopus)

Abstract

We present a novel approach to online multi-target tracking based on recurrent neural networks (RNNs). Tracking multiple objects in real-world scenes involves many challenges, including a) an a-priori unknown and time-varying number of targets, b) a continuous state estimation of all present targets, and c) a discrete combinatorial problem of data association. Most previous methods involve complex models that require tedious tuning of parameters. Here, we propose for the first time, an end-to-end learning approach for online multi-target tracking. Existing deep learning methods are not designed for the above challenges and cannot be trivially applied to the task. Our solution addresses all of the above points in a principled way. Experiments on both synthetic and real data show promising results obtained at ≈300 Hz on a standard CPU, and pave the way towards future research in this direction.

Original languageEnglish
Title of host publicationProceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)
Subtitle of host publicationSan Francisco, California, USA — February 04 - 09, 2017
EditorsSatinder Singh, Shaul Markovitch
Place of PublicationPalo Alto CA USA
PublisherAssociation for the Advancement of Artificial Intelligence (AAAI)
Pages4225-4232
Number of pages8
ISBN (Electronic)9781577357810
Publication statusPublished - 2017
Externally publishedYes
EventAAAI Conference on Artificial Intelligence 2017 - Hilton San Francisco Union Square, San Francisco, United States of America
Duration: 4 Feb 201710 Feb 2017
Conference number: 31st
http://www.aaai.org/Conferences/AAAI/aaai17.php

Conference

ConferenceAAAI Conference on Artificial Intelligence 2017
Abbreviated titleAAAI 2017
Country/TerritoryUnited States of America
CitySan Francisco
Period4/02/1710/02/17
Internet address

Cite this