Abstract
A new methodology has been developed for preparing α-functional polymers in a one-pot simultaneous polymerization/isocyanate "click" reaction. Our original synthetic strategy is based on the preparation of a carbonyl-azide chain transfer agent (CTA) precursor that undergoes the Curtius rearrangement in situ during reversible addition-fragmentation chain transfer (RAFT) polymerization yielding well-controlled α-isocyanate modified polymers. This strategy overcomes numerous difficulties associated with the synthesis of a polymerization mediator bearing an isocyanate at the R group and with the handling of such a reactive functionality. This new carbonyl-azide CTA can control the polymerization of a wide range of monomers, including (meth)acrylates, acrylamides, and styrenes (M n = 2-30 kDa; = 1.16-1.38). We also show that this carbonyl-azide CTA can be used as a universal platform for the synthesis of α-end-functionalized polymers in a one-pot RAFT polymerization/isocyanate "click" procedure.
Original language | English |
---|---|
Pages (from-to) | 12596-12603 |
Number of pages | 8 |
Journal | Journal of the American Chemical Society |
Volume | 134 |
Issue number | 30 |
DOIs | |
Publication status | Published - 1 Aug 2012 |
Externally published | Yes |