Abstract
With the recent explosive increase of digital data, image recognition and retrieval become a critical practical application. Hashing is an effective solution to this problem, due to its low storage requirement and high query speed. However, most of past works focus on hashing in a single (source) domain. Thus, the learned hash function may not adapt well in a new (target) domain that has a large distributional difference with the source domain. In this paper, we explore an end-to-end domain adaptive learning framework that simultaneously and precisely generates discriminative hash codes and classifies target domain images. Our method encodes two domains images into a semantic common space, followed by two independent generative adversarial networks arming at crosswise reconstructing two domains' images, reducing domain disparity and improving alignment in the shared space. We evaluate our framework on four public benchmark datasets, all of which show that our method is superior to the other state-of-the-art methods on the tasks of object recognition and image retrieval.
Original language | English |
---|---|
Title of host publication | Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence |
Editors | Sarit Kraus |
Place of Publication | Marina del Rey CA USA |
Publisher | Association for the Advancement of Artificial Intelligence (AAAI) |
Pages | 2477-2483 |
Number of pages | 7 |
ISBN (Electronic) | 9780999241141 |
DOIs | |
Publication status | Published - 2019 |
Event | International Joint Conference on Artificial Intelligence 2019 - Macao, China Duration: 10 Aug 2019 → 16 Aug 2019 Conference number: 28th https://ijcai19.org/ https://www.ijcai.org/proceedings/2019/ (Proceedings) |
Conference
Conference | International Joint Conference on Artificial Intelligence 2019 |
---|---|
Abbreviated title | IJCAI 2019 |
Country/Territory | China |
City | Macao |
Period | 10/08/19 → 16/08/19 |
Internet address |